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Abstract

An immersed boundary method for the incompressible Navier–Stokes equations in irregular domains is developed
using a local ghost cell approach. This method extends the solution smoothly across the boundary in the same direction
as the discretization it will be used for. The ghost cell value is determined locally for each irregular grid cell, making it
possible to treat both sharp corners and thin plates accurately. The time stepping is done explicitly using a second order
Runge–Kutta method. The spatial derivatives are approximated by finite difference methods on a staggered, Cartesian grid
with local grid refinements near the immersed boundary. The WENO scheme is used to treat the convective terms, while all
other terms are discretized with central schemes. It is demonstrated that the spatial accuracy of the present numerical
method is second order. Further, the method is tested and validated for a number of problems including uniform flow past
a circular cylinder, impulsively started flow past a circular cylinder and a flat plate, and planar oscillatory flow past a cir-
cular cylinder and objects with sharp corners, such as a facing square and a chamfered plate.
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1. Introduction

Flow problems involving complex geometries still poses a difficult challenge in computational fluid
dynamics. Traditional methods use body-fitted grids, structured or unstructured, that conforms to the solid
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boundary. However, the difficulty of generating high-quality grids increases with the complexity of the geom-
etry and much effort must be put into the pre-processing stage. An alternative approach is to use so-called
immersed boundary methods, sometimes referred to as Cartesian grid methods, where the boundary intersects
with an underlying Cartesian grid. No complexity is involved in generating the Cartesian grid and most stan-
dard numerical schemes can be used, although some modifications to the discretization are required in the
vicinity of the immersed boundary.

Several different immersed boundary methods can be found in the literature. They can be classified as either
diffuse (continuous) methods or sharp (discrete) methods [49,51]. The diffuse methods are considered to be
somewhat simpler to use than the sharp category, but it is not straightforward how the boundary conditions
should be imposed at the immersed boundary. The immersed boundary method as proposed by Peskin [55,56]
was originally developed to handle elastic boundaries for simulating blood flow in the heart, but has later been
used to simulate flow with rigid boundaries, e.g. [38,63]. The boundary conditions are enforced through a
smoothed forcing term added to the momentum equation. Other examples of diffuse methods can be found
in [22,61,86,53], among others.

One disadvantage with diffuse methods is that the effect of the boundary is distributed over a band of sev-
eral grid points which smear out discontinuities across the boundary. This smearing has an unfavorable effect
on the accuracy of the numerical scheme. More accurate schemes can be found among the category of sharp
methods. In these methods the numerical discretization near the immersed boundary is modified so that the
boundary conditions are imposed directly at the location of the boundary. The cut-cell method is such an
approach used within the finite volume framework [13,57,73,83,85]. Grid cells cut by the immersed boundary
are reshaped to conform to the boundary. This reshaping may in some cases result in very small grid cells with
an adversely impact on the numerical stability. To overcome this problem, cell-merging strategies have been
successfully proposed [57,85]. However, due to the many possible configurations of the irregular cut-cell, par-
ticularly in three dimensions, implementation becomes a tedious and non-trivial task.

Fadlun et al. [14] proposed to reconstruct the solution at grid nodes in the flow field nearest to the
immersed boundary using some form of interpolation, or external forcing, to enforce the sharp boundary
conditions. This approach does not affect the numerical stability since the numerical operators can remain
unchanged; however, the crucial issue is more related to how the solution is reconstructed near the bound-
ary [21]. Fadlun et al. [14] used a one-dimensional interpolation along the grid line intersecting the solid
boundary, but the choice of interpolation direction may seem to be arbitrary in the case of more geomet-
rically complex shaped boundaries. Later, Balaras [1] introduced a reconstruction scheme where the solu-
tion is reconstructed along a well-defined line normal to the body. Similar ideas can be found in [20,21,82].
These methods do not solve any equation at the first grid point external to the boundary [14]. It should be
stressed that Fadlun et al. [14] enforced the boundary condition on the tentative velocity field, which does
not satisfy the divergence constraint, before correcting the velocity due to the updated pressure field. They
argue that the correction obtained from the projection step introduced only small errors in the treatment of
the immersed boundaries.

For finite difference methods, the numerical operators near the immersed boundary can be explicitly mod-
ified to include points at the boundary instead of grid points inside the solid region [74,46,49,84]. Marella et al.
[49] obtained valid finite difference expressions for the first- and second-derivatives using Taylor series expan-
sions involving only grid points on one side of the boundary. This approach is somewhat analogous to the cut-
cell method for finite volume schemes, but only one single configuration of a numerical operator is needed
since modifications to the discretization stencil depends only on the distance to the boundary and not the
shape of the irregular cell. The numerical stability of the modified stencil may be altered if the boundary is
very close to a grid point. One way of avoiding this problem is to move the boundary slightly within a grid
cell [49], which locally decreases the order of accuracy.

An other sharp interface approach is the immersed interface method (IIM). The IIM as proposed by Leve-
que and Li [41] was developed to solve elliptic problems with discontinuous and non-smooth solutions. Stan-
dard finite difference methods work poorly for these problems since the Taylor expansions are not valid for
non-smooth functions. In the IIM, correction terms are added to the numerical discretization to account
for any jump in the solution or its derivative. The original IIM has been modified for various sharp interface
problems (e.g. [4,32,42,43,47,77]), and it has also been extended to solve incompressible flow problems with
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solid boundaries [9,44,45,81,39]. It should be noted that every type of discretization stencils have their own
unique correction term.

The use of ghost cells introduce an alternative way of imposing the boundary conditions. Traditional ghost
cell methods assume that analytical continuation of the solution across the boundary is possible. Ghost cells
are fictitious cells inside the solid which are updated by extrapolating values from the flow field and the bound-
ary. The numerical operators do not need to be reformulated near the boundary, instead the boundary con-
ditions are implicitly incorporated through the ghost cells. There are numerous ways of extrapolating values
into the ghost cells. A local flow variable is commonly represented in terms of a polynomial which is used to
evaluate the ghost point. The accuracy of the ghost cell depends on the order of the interpolation scheme used
to obtain this polynomial [70]. Higher order polynomials are more accurate but also known to be more sen-
sitive to numerical instabilities.

Majumdar et al. [48] and Tseng and Ferziger [70,71] use two-dimensional linear and quadratic interpo-
lation involving fluid nodes in the vicinity of the boundary and boundary points to construct the local
polynomial. To remedy potential instabilities they introduce an image point I inside the fluid along the
normal to the boundary which goes through the ghost node G (see Fig. 1). The concept of using an image
point in the wall-normal direction has been widely used by others (e.g. [6,7,18,75]). Obtaining a wall-nor-
mal direction, however, is not always straightforward, instead Tremblay and Friedrich [68] use a weighted
combination of one-dimensional extrapolations to update their ghost cells. Their weighting coefficients
depend only on the distance to the wall, where the direction closest to the boundary is given the largest
weighting.

While a wall-normal or multi-directional approach of obtaining the ghost cell value may seem like a natural
choice for smooth boundaries it is not that obvious for more irregular shaped geometries. For instance, if the
geometry consist of a sharp corner, as in Fig. 2(a), extending the solution across the immersed boundary in the
y-direction ðB� GÞ does not necessarily create a solution which is continuous across the boundary in the x-
direction ðA� GÞ, and vice versa. Analytical continuation is not possible since the interior solution is not single
valued. For this reason, the direction of the extrapolation does also influence the accuracy of the method.
Another problem associated with ghost cell methods is encountered, as shown in Fig. 2(b), if a thin plate,
e.g. a trailing edge, separates two active grid nodes. For this problem, the ghost cells must lie inside the fluid
domain requiring separate memory locations [17]. The sharp interface methods of Udayakumar et al. [74] and
Marella et al. [49] are well suited for such irregular shapes, but unlike their approaches the ghost cell method
utilizes a simple extension to more advanced schemes since no changes need to be applied to the numerical
discretization. The external forcing approach of e.g. [14] can also handle such complex geometries, but discret-
ization stencils involving grid cells beyond the neighbouring node would then require a wide band of inactive
grid cells inside the fluid domain which are updated by interpolation.
Fig. 1. Illustration of a ghost cell (G) using an image point (I).



Fig. 2. Irregular shaped geometries: (a) a sharp corner and (b) a thin plate.
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In this work, we present an immersed boundary method capable of solving the incompressible Navier–
Stokes equations in the presence of highly irregular boundaries. The main idea is to use a local directional
ghost cell which is obtained by one-dimensional extrapolation along the same direction as the discretization
it will be used for. As for the example in Fig. 2(a), the ghost cell needs to be determined twice, along the x- and
y-directions, respectively. Each irregular grid cell has its own set of local ghost cells because of the topological
differences. Similar concepts have been used when solving elliptic equations on irregular domains (e.g. [19,87]).
The present approach differs from other ghost cell methods mainly in the way the ghost cell values are extrap-
olated and updated. The ghost cells are updated such that the velocity field satisfies both the immersed bound-
ary condition and the incompressibility constraint at the end of each time step. We also present a method to
avoid numerical instabilities associated with grid nodes located close to the boundary without reducing the
formal accuracy. Also, a block structured grid refinement procedure is adopted to efficiently resolve large vari-
ations in the flow near the immersed boundary.

The rest of the paper is organized as follows: In Section 2 the basic idea behind the ghost cell method is
outlined using a one-dimensional approach. The governing equations are presented in Section 3. Then, in Sec-
tion 4, the numerical method for solving the incompressible Navier–Stokes equations is described in detail,
including the treatment of the immersed boundary and the local grid refinement strategy. Numerical results
are presented in Section 5 before we summarize with a conclusion in Section 6.

2. A one-dimensional ghost cell approach

Traditional finite difference methods cannot be applied to discontinuous and non-smooth functions since
the Taylor expansion is not valid for such problems. But, if the function is piecewise smooth it is possible
to devise a technique that conforms to any jump in the function and its higher derivatives. For simplicity, con-
sider a generic, one-dimensional function f ðxÞ; x 2 ½xmin; xmax�, which is analytic everywhere except at the inte-
rior point x ¼ xaðxmin < xa < xmaxÞ,
f ðxÞ ¼
f �ðxÞ if xmin 6 x 6 xa;

f þðxÞ if xa < x 6 xmax:

�

The computational domain ½xmin; xmax� can be discretized into N þ 1 grid points with uniform grid spacing
Dx ¼ ðxmax � xminÞ=N . The grid coordinates are defined as xi ¼ xmin þ iDx for 0 6 i 6 N and fi denotes f ðxiÞ.
Then, for any continuous and smooth region xl < xi < xr we can write the numerical approximation to the
nth-derivative of f ðxiÞ as
f ðnÞi ¼ LðnÞðfl; flþ1; . . . ; fi; . . . ; fr�1; frÞ þOðDxpÞ; ð1Þ

where LðnÞ denotes the discrete finite difference operator and p is the order of accuracy of the numerical
approximation. The width of the discretization stencil, r � lþ 1, depends on the given finite difference scheme.
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Next, let the interface be located at xa ¼ xj þ aDx where 0 6 a < 1 and i 6 j < r such that the grid cells
xj and xjþ1 are separated by the interface. The finite difference approximation (1) can no longer be applied
since that involves grid cells on both sides of the interior point xa. However, since f ðxÞ is piecewise analytic
it can be smoothly extended beyond the interface by means of a fictitious domain (see Fig. 3). As a result,
the standard finite difference operator LðnÞ can be applied to approximate the nth-derivative of f ðxiÞ,
Fig.
f ðnÞi ¼ LðnÞðfl; flþ1; . . . ; fi; . . . ; fj; f
g
jþ1; . . . ; f g

r�1; f
g
r Þ þOðDx�pÞ; ð2Þ
where the function values fjþ1; . . . ; fr are replaced by fictitious ghost cell values f g
jþ1; . . . ; f g

r .
The ghost cell values can be determined by, for instance, fitting a qth order Lagrange polynomial, pqðxÞ, to

the points xj�qþ1; . . . ; xj and xa, where
pqðxÞ ¼
Xj

s¼j�qþ1

bsðxÞfs

 !
þ baðxÞf �a ð3Þ
for
bsðxÞ ¼
Yj

t¼j�qþ1
t 6¼s

x� xt

xs � xt

0
BB@

1
CCA x� xa

xs � xa
; baðxÞ ¼

Yj

t¼j�qþ1

x� xt

xa � xt
and
f �a ¼ lim
x!x�a

f ðxÞ:
The polynomial pqðxÞ approximates f ðxÞ to the left of xa, and it gives a smooth extension of f �ðxÞ at
xjþ1; . . . ; xr with the truncation error OðDxqþ1Þ. The error introduced by the ghost cells in the numerical
approximation of f ðnÞi will then be of OðDxqþ1�nÞ since the nth-derivative operator LðnÞ involves a division
by Dxn. The order of accuracy of the finite difference discretization (2) is therefore �p ¼ minðp; qþ 1� nÞ;
hence, the local accuracy of the numerical scheme is preserved if q P p þ n� 1.

The polynomial approximation (3) may present some difficulties if the interior point xa is very close to xj.
This is due to the singular behaviour of bj and ba as jxj � xaj ! 0. To avoid this unfavorable behaviour we
introduce an image point defined as
xc ¼ xj �maxð0; �� aÞDx ¼ xa �maxða; �ÞDx;
where � is a predefined positive constant chosen such that if a P � then Eq. (3) exhibits no singular behaviour.
Further, we reconstruct f ðxcÞ using a qth order Lagrange polynomial and the grid points xj�q; . . . ; xj, i.e.
3. Illustration of a smoothly extended discontinuous function f ðxÞ. Actual function values (d); fictitious ghost cell values (s).
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fc ¼ pqðxcÞ ¼
Xj

s¼j�q

Yj

t¼j�q
t 6¼s

xc � xt

xs � xt

0
BB@

1
CCAfs:
The ghost cells can then be updated by the qth order polynomial fitted to the points xj�qþ1; . . . ; xc and xa,
pqðxÞ ¼
Xj�1

s¼j�qþ1

bsðxÞfs

 !
þ baðxÞf �a þ bcðxÞfc; ð4Þ
where
bsðxÞ ¼
Yj�1

t¼j�qþ1
t 6¼s

x� xt

xs � xt

0
BB@

1
CCA ðx� xaÞðx� xcÞ
ðxs � xaÞðxs � xcÞ

; baðxÞ ¼
Yj�1

t¼j�qþ1

x� xt

xa � xt

 !
x� xc

xa � xc
and
bcðxÞ ¼
Yj�1

t¼j�qþ1

x� xt

xc � xt

 !
x� xa

xc � xa
:

This way, none of the denominators in the b-coefficients become smaller than � as long as � 6 0:5, and the
formal accuracy of the ghost cells are preserved. Effectively, this is the same as using a weighted combination
of the extrapolations involving the grid points xj�qþ1; . . . ; xj; xa and xj�q; . . . ; xj�1; xa.

3. Governing equations

Consider a two-dimensional Cartesian computational domain X containing an immersed solid boundary in
the form of a simple closed curve, C, dividing X into two separate sub-domains Xþ and X�. Here Xþ denotes
the fluid region and X� denotes the solid body. The fluid is assumed to be an incompressible, Newtonian fluid
described by the non-dimensional Navier–Stokes equations without the effect of gravity
r � u ¼ 0; x 2 Xþ; ð5Þ
ou

ot
þ u � ru ¼ �rp þ 1

Re
r2u; x 2 Xþ; ð6Þ
where u ¼ ðu; vÞ is the fluid velocity normalized with respect to a characteristic velocity scale U ; x ¼ ðx; yÞ de-
notes the Cartesian coordinates normalized by a characteristic length scale D; t is the time normalized by
D=U ; and p is the pressure normalized by qU 2 where q is the mass density of the fluid. The Reynolds number
is defined as Re ¼ UD=m where m is the kinematic viscosity.

Further, boundary conditions for the velocity and the pressure field must be prescribed at the immersed
boundary. Requiring no slip at the solid boundary for a fixed, non-moving body yields
u ¼ uC � 0; x 2 C: ð7Þ

For the pressure field, boundary conditions can be obtained from the momentum Eq. (6) in each axis direction
as
op
ox
¼ 1

Re
r2u and

op
oy
¼ 1

Re
r2v; x 2 C; ð8Þ
since the left hand side of Eq. (7) vanishes at the boundary. Projecting these conditions onto the unit normal n

to the solid boundary C gives the following Neumann boundary condition:
n � rp ¼ op
on
¼ n � 1

Re
r2u; x 2 C:
Boundary conditions at the exterior boundary oX and initial conditions must also be applied in order to close
the system.
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4. Numerical method

In this section, the numerical method for solving incompressible flow in complex geometries is presented.
This scheme is based on the well-known projection method [10] where an intermediate velocity field is first
obtained from an approximation of the momentum Eq. (6), then an elliptic equation is solved for the pressure
which enforces the divergence constraint (5).

In this work the time stepping is done explicitly using a second order predictor–corrector method. The spa-
tial derivatives are approximated by finite difference discretization on a staggered grid. A fifth order WENO
scheme [30,31] is used to treat the convective terms in Eq. (6) while central schemes are used for all other terms.
A local grid refinement technique is used to efficiently resolve the boundary layer flow near the immersed
boundary. The details of the numerical scheme are outlined below.

4.1. Time-stepping procedure

The following predictor–corrector procedure is a Runge–Kutta method based on the trapezoidal rule, also
known as Heun’s method. The two steps of the projection method are done twice at each time step to ensure
that only a divergence-free velocity field is used in the different terms of Eq. (6). At the predictor stage, an
Euler step is taken to advance the solution with the time step Dt. Let
F ðuÞ ¼ �u � ruþ 1

Re
r2u; ð9Þ
then, using a time-discrete form,
u� ¼ un þ DtFðunÞ

and
�unþ1 ¼ u� � Dtr�p;
where �p is obtained from solving
r2�p ¼ 1

Dt
r � u�: ð10Þ
The predicted velocities, �unþ1, are then used in the corrector step to obtain the solution at time tnþ1,
u�� ¼ un þ Dt
2
ðF ðunÞ þ F ð�unþ1ÞÞ ð11Þ
and
unþ1 ¼ u�� � Dtrp̂; ð12Þ

where p̂ is calculated from
r2p̂ ¼ 1

Dt
r � u��: ð13Þ
Appropriate numerical boundary conditions for the Poisson equation (13) can be obtained by rearranging Eq.
(12),
rp̂ ¼
u��C � unþ1

C

� �
Dt

at x 2 C: ð14Þ
By setting u��C ¼ unþ1
C the boundary conditions (8) are implicitly satisfied, leading to a simpler homogeneous

boundary condition for the pressure when solving Eq. (13),
rp̂ ¼ 0 at x 2 C:
Similar arguments can be used to obtain the numerical boundary condition at the exterior boundary if the
velocity is prescribed at time tnþ1 (e.g. walls and inlets). If the exterior boundary is an outlet it is common
to apply a Dirichlet boundary condition for the pressure,
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p̂ ¼ poutlet at x 2 oXoutlet:
The boundary conditions for �p when solving Eq. (10) are the same as given for p̂ above where u�� is replaced by
u�.

It follows from Eqs. (11) and (12) that if we define
pnþ1=2 ¼ p̂
then not only the velocity field is second order accurate in time but also the pressure. Thus, the pressure field is
lagged in time. Second order temporal accuracy for the pressure at tnþ1 is obtained by extrapolation, i.e.
pnþ1 ¼ pnþ1=2 þ Dt
2

op
ot

nþ1=2

� pnþ1=2 þ Dt
2

pnþ1=2 � pn�1=2

tnþ1=2 � tn�1=2

� �
:

4.2. Spatial discretization

The governing equations are discretized using a staggered grid: the velocity components are defined at the
appropriate cell faces, uiþ1=2;j and vi;jþ1=2, and the pressure is defined at the cell centres, pi;j. Here, the subscript
i; j indicates the grid cell ði; jÞ in index space or xi;j ¼ ðxi; yjÞ in physical space, the subscript iþ 1=2; j indicates
the cell face separating cell ði; jÞ and ðiþ 1; jÞ at xiþ1=2;j; and i; jþ 1=2 indicates the cell face separating cell
ði; jÞ and ði; jþ 1Þ at xi;jþ1=2. The uniform grid cell spacing for each grid level are denoted Dx and Dy in x-
and y-direction, respectively. Where it is appropriate, we have dropped the superscript n for the ease of nota-
tion in the remaining sections.

4.2.1. Relationship between the grid and the immersed boundary

Before we proceed with the details of the spatial discretizations a relationship between the grid and the
immersed boundary needs to be established. In order to have a practical representation of the immersed
boundary, the body surface is discretized into a number of piecewise linear elements. There are no restrictions
on the size of these elements so that any curved surface can be represented to desired accuracy by simply using
a sufficiently large number of elements. A simpler representation of the immersed boundary is possible using
the zero level set of a distance function; however, the level set formulation fails to describe sharp corners and
infinitely thin plates.

Grid cells where the cell centre is inside the solid are defined as inactive, while the cells where the cell centre
is outside the solid are defined as active. An active grid cell is said to be irregular if at least one neighbouring
grid cell is separated by an immersed boundary; otherwise, it is defined as regular. A velocity point is active if
and only if grid cells on both sides of that cell face are active and there are no immersed boundary separating
the two cell centre points (see Fig. 4).
Definition of active and inactive grid points. Active pressure point (d); inactive pressure point (s); active velocity point (j);
e velocity point (h).
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Some inactive velocity points may still lie in the fluid. These velocity points are referred to as boundary
points. It should be noted that these boundary points are marked as inactive only because no pressure gradi-
ents can be obtained at these points due to the lack of active pressure cells on both sides of the point. In order
to have a well-defined problem, the velocity components defined as boundary points are updated by interpo-
lation using the no-slip condition at the immersed boundary and active velocity points within the fluid. This
procedure may seem similar to e.g. [14], but we would like to emphasize that there are still active velocity
points adjacent to the boundary. Here, we have used a one-dimensional, third order interpolation scheme.
For instance, as shown in Fig. 5(a), let xiþ1=2;j be the location of the boundary point and uiþ1=2;j be the inter-
polated velocity, then the one-dimensional interpolation in x-direction is given as (skipping the j-index)
Fig. 5.
bound
uiþ1=2 ¼
Xi

s¼i�2

Yi

t¼i�2
t 6¼s

xiþ1=2 � xt�1=2

xs�1=2 � xt�1=2

0
BB@

1
CCA xiþ1=2 � xC

xs�1=2 � xC
us�1=2 þ

Yi

t¼i�2

xiþ1=2 � xt�1=2

xC � xt�1=2

 !
uC;
where uC is the wall boundary condition located at xC; and ui�1=2; ui�3=2 and ui�5=2 are values taken from the
neighbouring points xi�1=2; xi�3=2 and xi�5=2, respectively.

If a boundary point can be interpolated from more than one direction, each direction is weighted by a mul-
tiplication factor [67,68], i.e.
uiþ1=2;j ¼ cxu
x
iþ1=2;j þ cyu

y
iþ1=2;j; ð15Þ
where the weighting coefficients are given as
cx ¼
1

1þ aDx
bDy

� �2
and cy ¼

1

1þ bDy
aDx

� �2
and the distance between the immersed surface and the boundary point in x and y-directions are aDx and bDy,
respectively (see Fig. 5(b)). This way the nearest surface element will give the largest influence on the velocity
component.

4.2.2. Discretization of the momentum equation
For now, let us assume that all velocity nodes involved in the discretizations below are active and located

far away from any boundary surface so that the finite difference stencils are all well-defined and valid.
Reconstruction of boundary points: (a) One-dimensional interpolation in x-direction. (b) Multi-directional interpolation. Inactive
ary point (h); active velocity points (j); wall points on immersed boundary (d).
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We define a set of cell centre velocities with simple averaging:
ui;j ¼
ui�1=2;j þ uiþ1=2;j

2
and vi;j ¼

vi;j�1=2 þ vi;jþ1=2

2
: ð16Þ
In order to update u and v on the appropriate cell faces, we also need to define u at the cell face
ði; jþ 1=2Þ and v at ðiþ 1=2; jÞ. Simple averaging gives
ui;jþ1=2 ¼
ui;j þ ui;jþ1

2
and viþ1=2;j ¼

vi;j þ viþ1;j

2
: ð17Þ
Let us now consider the x-component of the momentum equation. The second-derivatives in the viscous term
are dicretized using standard second order accurate central differencing at the cell faces. We get
ðr2uÞiþ1=2;j ¼ ðuxxÞiþ1=2;j þ ðuyyÞiþ1=2;j;
where
ðuxxÞiþ1=2;j ¼
uiþ3=2;j � 2uiþ1=2;j þ ui�1=2;j

Dx2
and
ðuyyÞiþ1=2;j ¼
uiþ1=2;jþ1 � 2uiþ1=2;j þ uiþ1=2;j�1

Dy2
:

The convective terms, uux and vuy , are discretized using a fifth order upwind WENO scheme [30,31]. For the
first-derivative in the x-direction, ðuxÞiþ1=2;j, the upwind procedure gives us
ðuxÞiþ1=2;j ¼
u�x if uiþ1=2;j > 0;

uþx if uiþ1=2;j < 0;

0 otherwise;

8><
>:
where the WENO approximation is a convex combination of the three possible ENO3 approximations,
u�x ¼ x�1 u1�
x þ x�2 u2�

x þ x�3 u3�
x :
The three ENO3 stencils are defined as
u1�
x ¼

q�1
3
� 7q�2

6
þ 11q�3

6
;

u2�
x ¼ �

q�2
6
þ 5q�3

6
þ q�4

3
;

u3�
x ¼

q�3
3
þ 5q�4

6
� q�5

6
;

where
q�1 ¼
ui�3=2;j � ui�5=2;j

Dx
; q�2 ¼

ui�1=2;j � ui�3=2;j

Dx
; q�3 ¼

uiþ1=2;j � ui�1=2;j

Dx
; q�4 ¼

uiþ3=2;j � uiþ1=2;j

Dx
;

q�5 ¼
uiþ5=2;j � uiþ3=2;j

Dx
and
qþ1 ¼
uiþ7=2;j � uiþ5=2;j

Dx
; qþ2 ¼

uiþ5=2;j � uiþ3=2;j

Dx
; qþ3 ¼

uiþ3=2;j � uiþ1=2;j

Dx
; qþ4 ¼

uiþ1=2;j � ui�1=2;j

Dx
;

qþ5 ¼
ui�1=2;j � ui�3=2;j

Dx
:

The weights x�k are chosen such that the smoothest ENO3 stencil is given the most significant contribution to
the approximation; thus, any sharp discontinuity in the solution is given minimal weight reducing the numer-
ical errors and potential instabilities. Omitting the superscript ±, the weights are written as
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x1 ¼
a1

a1 þ a2 þ a3

; x2 ¼
a2

a1 þ a2 þ a3

and x3 ¼
a3

a1 þ a2 þ a3

;

where
a1 ¼
0:1

ðS1 þ �Þ2
; a2 ¼

0:6

ðS2 þ �Þ2
and a3 ¼

0:3

ðS3 þ �Þ2
;

with the regularization parameter � ¼ 10�6 and the smoothness indicators Sk given by
S1 ¼
13

12
ðq1 � 2q2 þ q3Þ

2 þ 1

4
ðq1 � 4q2 þ 3q3Þ

2
;

S2 ¼
13

12
ðq2 � 2q3 þ q4Þ

2 þ 1

4
ðq2 � q4Þ

2
;

S3 ¼
13

12
ðq3 � 2q4 þ q5Þ

2 þ 1

4
ð3q3 � 4q4 þ q5Þ

2
:

In smooth regions, where all Sk are approximately the same size, all three approximations are given the weight-
ing such that optimal fifth order accuracy is obtained. In non-smooth regions the accuracy of the WENO
scheme reduces to third order only; same as the ENO3 scheme.

The first-derivative in the y-direction, ðuyÞiþ1=2;j, is obtained in a similar fashion where viþ1=2;j is used to
determine the upwind direction.

To summarize, using the subset
Dx ¼ fui�5=2;j; ui�3=2;j; ui�1=2;j; uiþ1=2;j; uiþ3=2;j; uiþ5=2;j; uiþ7=2;jg
we can obtain numerical approximations to ðuxÞiþ1=2;j and ðuxxÞiþ1=2;j following the procedure described above.
Similarly, using the subset
Dy ¼ fuiþ1=2;j�3; uiþ1=2;j�2; uiþ1=2;j�1; uiþ1=2;j; uiþ1=2;jþ1; uiþ1=2;jþ2; uiþ1=2;jþ3g;
we can approximate ðuyÞiþ1=2;j and ðuyyÞiþ1=2;j following the same procedure. These approximations are found
straightforwardly since none of the velocity points in the subsets are separated by a surface element.

On the other hand, if the point of interest is located close to an immersed boundary such that at least one of
the velocity points in the subsets above is separated from the rest by a surface element (see Fig. 6) some mod-
ifications are required in order to satisfy the boundary conditions correctly. Since all terms in the numerical dis-
cretization can be treated dimension by dimension it is simple to adopt the one-dimensional ghost cell approach
described in Section 2. That means that any point separated by an immersed boundary can be replaced by a tem-
porary, fictitious value which smoothly extends the solution across the boundary. For instance, as shown in
Fig. 6, the velocities uiþ3=2;j; uiþ5=2;j and uiþ7=2;j cannot be used to evaluate ðuxÞiþ1=2;j and ðuxxÞiþ1=2;j since the
numerical discretizations are not valid across the boundary. However, if these velocities are replaced by a set
of fictitious values, ug

iþ3=2;j; u
g
iþ5=2;j and ug

iþ7=2;j, obtained by extrapolating the solution along the x-direction, then
ðuxÞiþ1=2;j and ðuxxÞiþ1=2;j can be computed following the same procedure as above using the subset
Dg
x ¼ fui�5=2;j; ui�3=2;j; ui�1=2;j; uiþ1=2;j; u

g
iþ3=2;j; u

g
iþ5=2;j; u

g
iþ7=2;jg;
instead of Dx. In a similar way, the derivatives ðuyÞiþ1=2;j and ðuyyÞiþ1=2;j can be approximated using the subset
Dg
y ¼ fuiþ1=2;j�3; uiþ1=2;j�2; uiþ1=2;j�1; uiþ1=2;j; u

g
iþ1=2;jþ1; u

g
iþ1=2;jþ2; u

g
iþ1=2;jþ3g;
where the ghost cell values ug
iþ1=2;jþ1; u

g
iþ1=2;jþ2 and ug

iþ1=2;jþ3 are obtained by extrapolation along the y-direction.
Now, the x-component of Eq. (9) in the time-stepping procedure can be written as
F xðuiþ1=2;jÞ ¼ �ðuiþ1=2;jðuxÞiþ1=2;j þ viþ1=2;jðuyÞiþ1=2;jÞ þ
1

Re
ððuxxÞiþ1=2;j þ ðuyyÞiþ1=2;jÞ:
Likewise, we can obtain numerical approximations to ðvxÞi;jþ1=2; ðvyÞi;jþ1=2; ðvxxÞi;jþ1=2 and ðvyyÞi;jþ1=2 in similar
manners as described above. Then the y-component of Eq. (9) becomes
F yðui;jþ1=2Þ ¼ �ðui;jþ1=2ðvxÞi;jþ1=2 þ vi;jþ1=2ðvyÞi;jþ1=2Þ þ
1

Re
ððvxxÞi;jþ1=2 þ ðvyyÞi;jþ1=2Þ:



Fig. 6. The stencil for calculating ðuxÞiþ1=2;j; ðuxxÞiþ1=2;j; ðuyÞiþ1=2;j and ðuyyÞiþ1=2;j. Invalid velocity points are replaced by fictitious ghost cell
values (h) obtained by extrapolating active velocity points (j) across the immersed boundary.
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As discussed in Section 2, the accuracy of the discretizations near the immersed boundary depends on the
accuracy of the ghost cells. To preserve at least second order accuracy in the viscous terms it is necessary
to use a cubic extrapolation scheme to obtain the ghost cell values; in this work a third order Lagrange poly-
nomial is used. A cubic extrapolation scheme reduces the WENO scheme into a third order accurate ENO3
scheme near the immersed boundary since the three possible ENO3 schemes will in this case lie on the same
curve. Further, if not enough active velocity points are available for a cubic extrapolation the order of the
extrapolation scheme is reduced to conform to the nodes available. This will reduce the accuracy locally; how-
ever, the impact on the global accuracy is assumed to be negligible small since this situation is expected to
occur at only a few places.

Velocity points located very close to the immersed boundary may be subject to numerical instabilities due to
the singular behaviour of the extrapolation scheme. Considering the x-component of the momentum equation,
the distance to the boundary in the x-direction for active velocity points must be at least half a grid cell spacing
which limits the problem to the discretization in y-direction only. Therefore, if the distance to the immersed
boundary along the y-direction is too small compared to the grid cell spacing, then the extrapolation scheme is
modified as described in Section 2 in order to avoid any singular behaviour. Similarly, this is only a problem
for the discretization in x-direction when solving the y-component of the momentum equation.

Furthermore, the cell centred velocity components cannot be calculated using simple averaging as in Eq.
(16) if one of the velocity points involved is located on the other side of a boundary. In this case, a one-dimen-
sional second order Lagrange polynomial, involving the boundary and two velocity points inside the flow, is
used to reconstruct the cell centred velocity component. The cell face velocity components given by Eq. (17)
are only evaluated in active velocity points; thus, the presence of an immersed boundary does not change the
way they are calculated.

4.2.3. Discretization of the pressure Poisson equation

In order to advance the solution to a divergence-free velocity field at time tnþ1 we need to solve a Poisson
equation for the pressure. For a staggered grid arrangement we use an exact projection method: the discrete
divergence constraint is exactly enforced. The projection step is performed twice, one for each step of the time-
integration procedure. For brevity, since both projection steps are identical, we will only focus on the pressure
Poisson Eq. (13) in the corrector step.



4366 P.A. Berthelsen, O.M. Faltinsen / Journal of Computational Physics 227 (2008) 4354–4397
We try to find a pressure, pi;j, such that the following constraint is satisfied
r � unþ1
i;j ¼ 0; ð18Þ
at every active grid cell where the divergence operator is defined by the central scheme
r � unþ1
i;j ¼

unþ1
iþ1=2;j � unþ1

i�1=2;j

Dx
þ

vnþ1
i;jþ1=2 � vnþ1

i;j�1=2

Dy
: ð19Þ
For regular grid cells, where all the surrounding velocity points are active, using Eq. (12) we can write
unþ1
iþ1=2;j ¼ u��iþ1=2;j � Dt

piþ1;j � pi;j

Dx

� �
;

unþ1
i�1=2;j ¼ u��i�1=2;j � Dt

pi;j � pi�1;j

Dx

� �
;

vnþ1
i;jþ1=2 ¼ v��i;jþ1=2 � Dt

pi;jþ1 � pi;j

Dy

� �
;

vnþ1
i;j�1=2 ¼ v��i;j�1=2 � Dt

pi;j � pi;j�1

Dy

� �
;

where rp is approximated by central differences. Inserted into Eq. (18) recovers the standard discrete Poisson
equation (13) for pressure at regular cells,
piþ1;j � 2pi;j þ pi�1;j

Dx2
þ

pi;jþ1 � 2pi;j þ pi;j�1

Dy2
¼ 1

Dt

u��iþ1=2;j � u��i�1=2;j

Dx
þ

v��i;jþ1=2 � v��i;j�1=2

Dy

� �
:

If the grid cell is irregular special care must be taken in order to satisfy the divergence-free velocity constraint.
Again, we want to satisfy Eq. (18) using the central scheme (19) where inactive velocity points are replaced by
fictitious values obtained by interpolation (note that an inactive velocity point is either obtained by interpo-
lation or extrapolation, depending on the location of the boundary, but for simplicity we shall now refer to
both procedures as interpolation). For instance, assume that xiþ1=2;j is an inactive velocity point and I is
an interpolation scheme which recovers the fictitious value satisfying the no-slip boundary condition, i.e.
unþ1;g
iþ1=2;j ¼ Iðunþ1Þ:
We can split the interpolation I into two parts, I 1 and I 2,
unþ1;g
iþ1=2;j ¼ Iðunþ1Þ ¼ I u�� � Dt

op
ox

� �
¼ I 1ðu��Þ � DtI 2

op
ox

� �
or
unþ1;g
iþ1=2;j ¼ u��;giþ1=2;j � Dt

op
ox

� �g

iþ1=2;j

;

where u��;giþ1=2;j can be interpreted as a fictitious, tentative velocity and ðop=oxÞgiþ1=2;j as a fictitious pressure gra-
dient. The no-slip condition in the interpolation I is satisfied by setting the boundary conditions
u��C ¼ unþ1

C and ðop=oxÞC ¼ 0 in I 1 and I 2, respectively (cf. Eq. (14)). The pressure gradient at an active veloc-
ity point is approximated by a central difference stencil using the pressures on both sides of the cell face; there-
fore, we can replace I 2 with an interpolation scheme Î 2 such that
I 2

op
ox

� �
¼ Î 2ðpÞ:
Further, we define a fictitious pressure pg
iþ1;j such that
op
ox

� �g

iþ1=2;j

¼
pg

iþ1;j � pi;j

Dx
or pg

iþ1;j ¼ pi;j þ Dx
op
ox

� �g

iþ1=2;j

:
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Then the Poisson equation (13) for pressure at the irregular cell can be written as
pg
iþ1;j � 2pi;j þ pi�1;j

Dx2
þ

pi;jþ1 � 2pi;j þ pi;j�1

Dy2
¼ 1

Dt

u��;giþ1=2;j � u��i�1=2;j

Dx
þ

v��i;jþ1=2 � v��i;j�1=2

Dy

 !
;

where the constraint
pg
iþ1;j � pi;j � DxÎ 2ðpÞ ¼ 0
closes the system. This way, the discrete divergence constraint (18) will be exactly enforced at the irregular cell
since Iðunþ1Þ ¼ I 1ðu��Þ � DtI 2ðop=oxÞ.

The choice of interpolation stencil I depends on the location of the immersed boundary. If the inactive
velocity point lies inside the fluid on the same side of the boundary as the cell centre, then it is treated as a
boundary point where a weighted combination of one-dimensional Lagrange interpolation is used (see Eq.
(15)). If the boundary separates the inactive velocity point from the cell centre, then the fictitious value is
obtained by extending the solution across the boundary as described in Section 2, i.e. one-dimensional extrap-
olation in the direction of discretization. For example, using a quadratic Lagrange polynomial to reconstruct
the solution along the x-direction in the example above gives
I 1ðu��Þ ¼
2

aðaþ 1Þ u
nþ1
C þ 2ða� 1Þ

a
u��i�1=2;j �

a� 1

aþ 1
u��i�3=2;j
and
Î 2ðpÞ ¼
2

aðaþ 1Þ
op
oxC
þ 2ða� 1Þ

a

pi;j � pi�1;j

Dx

� �
� a� 1

aþ 1

pi�1;j � pi�2;j

Dx

� �
;

where aDx is the distance between xi�1=2;j and the immersed boundary. Subtracting DtÎ 2ðpÞ from I 1ðu��Þ recov-
ers the quadratic interpolation
Iðunþ1Þ ¼ 2

aðaþ 1Þ u
nþ1
C þ 2ða� 1Þ

a
unþ1

i�1=2;j �
a� 1

aþ 1
unþ1

i�3=2;j;
since ðop=oxÞC ¼ 0.
It is sufficient to use a quadratic Lagrange polynomial in order to preserve the second order accuracy of the

discrete divergence operator; however, to ensure that the boundary points defined by Eq. (15) satisfy the dis-
crete divergence constraint a cubic polynomial should be used for these points. This ensures that the updated
velocity field actually satisfies both the no-slip boundary condition and the divergence constraint (18) at the
end of the time step, as opposed to e.g. [1,14].

In general, this approach is adopted to all irregular grid cells where inactive velocity points are replaced by
similar interpolation schemes. A set of additional constraints to p is coupled to the discrete Poisson equation
in order to solve for the fictitious pressure cells created for irregular cells. The resulting system of linear equa-
tions can be solved using most types of iterative methods. We have successfully solved the linear system using
the BiCGSTAB method with ILU(k) and ILUT preconditioning as provided in the SPARSKIT package
[59,60].

4.3. Local grid refinement procedure

The local grid refinement approach adds new refinement grids to regions where the variations in the flow
are expected to be high, e.g. in the boundary layer near solid surfaces. This local grid refinement is necessary in
order to achieve required resolution and still maintain acceptable computational efficiency. The grid cells that
are tagged for refinement are grouped together using the point clustering algorithm of [3] to form efficient
block structured patches, or subgrids, which cover the tagged regions. These subgrids are refined and then
tagged for further point clustering and refinement until adequate local resolution is obtained.

In a block structured approach, rectangular sub-domains are refined instead of individual grid cells such
that regions where higher resolution is needed can be covered with a relatively small number of refined
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subgrids (see Fig. 7). Although this approach results in some unnecessary refinement, the advantages are better
efficiency of data access and less overhead costs due to irregular operations such as interlevel communications
[50].

The refined subgrids are aligned with the underlying coarser grid. They form an hierarchical structure
where the coarsest grid belongs to level l ¼ 0 and the next finer grids belong to the next level l ¼ 1, and so
on. The refinement ratio between the two grid levels l and l � 1 is 2. The subgrids are properly nested, meaning
that any refined grid communicate only with grids on same level l or with grids on only one refinement level
higher (lþ 1) or lower (l� 1). Any communication between two refinement levels l and lþ k where k P 2
goes through the intermediate levels. This simplifies the passing of information between the refinement levels.

The solutions at all refinement levels are fully coupled throughout the time-stepping procedure and all levels
are given the same time step Dt. The finer grid solution is transferred from level lþ 1 to the coarser level l in
the overlap region by using simple averaging, starting from the finest level all the way down to the base grid at
l ¼ 0. Refined subgrids not extended to a physical boundary or another subgrid on same refinement level use
information from coarser grids to provide boundary values. These boundary cells are updated by higher order
interpolation on a coarser level.

4.3.1. The coarse/fine grid interface

Special attention must be given to the coarse/fine grid interface between two refinement levels when solving
the pressure Poisson equation. Due to the staggered arrangement of the variables and the alignment of the
refined grids, both the coarse level velocity and the fine level velocity are located at the grid interface. How-
ever, to ensure continuity across the grid interface, the velocity is calculated from the governing equations only
on the fine level while the coarse level velocity is determined by linear interpolation of the fine grid velocity.
Consequently, the coarse level pressure gradient at the grid interface also needs to be obtained from the fine
level in a similar fashion in order to maintain a consistent pressure and velocity field.

We let the pressure on the coarse level act like a Dirichlet condition for the pressure on the fine grid level,
while information is passed from the fine level to the coarse level through a non-homogeneous Neumann con-
dition. This ensures that the pressure is continuous and smooth across the grid interface and is what [50]
referred to as the elliptic matching condition.
Fig. 7. Block structured grid refinement near the immersed boundary.
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Following the approach of [50], we write the Laplace operator LðpÞ ¼ r2p in the pressure Poisson equation
as a flux difference operator
Fig. 8.
interm
LðpÞi;j ¼ r � f ¼
f x

iþ1=2;j � f x
i�1=2;j

Dx
þ

f y
i;jþ1=2 � f y

i;j�1=2

Dy
;

where the edge-based fluxes are given as f ¼ rp. Let oXc=f denote the boundary between the coarse and the
fine computational domain.

For the region away from oXc=f , in both domains, the Laplace operator is the standard five point stencil
where the edge-based fluxes are given as
f x
iþ1=2;j ¼

piþ1;j � pi;j

Dx
and f y

i;jþ1=2 ¼
pi;jþ1 � pi;j

Dy
in both directions. If the coarse cell is bordering the grid interface then the flux passing through oXc=f is re-
placed by an average flux calculated on the fine grid level. For example, let coarse grid variables be denoted
by capital letters and fine grid variables by small letters (see Fig. 8(a)) then summing the fluxes passing in and
out of the coarse cell ðI ; JÞ located above the grid interface gives
LðPÞI ;J ¼
F x

Iþ1=2;J � F x
I�1=2;J

DX
þ

F y
I ;Jþ1=2 � F y;ave

I ;J�1=2

DY
;

where
F x
Iþ1=2;J ¼

P Iþ1;J � P I;J

DX
; F x

I�1=2;J ¼
P I ;J � P I�1;J

DX
; F y

I ;Jþ1=2 ¼
P I ;Jþ1 � P I ;J

DY
;

and
F y;ave
I;J�1=2 ¼

1

2
f y

i;j�1=2 þ f x
iþ1;j�1=2

� �
¼ 1

2

pi;j � pi;j�1

Dy
þ

piþ1;j � piþ1;j�1

Dy

� �
:

The boundary cell values pi;j and piþ1;j are obtained by first a quadratic interpolation parallel to the boundary
to get the intermediate points on both sides of the coarse grid node location as shown in Fig. 8(b). Then qua-
dratic interpolations are used normal to the grid interface to get the boundary cell values for the fine grid. For
the fine cells ði; j� 1Þ and ðiþ 1; j� 1Þ adjacent to the grid interface, the Laplace operator L becomes the
(a) Coarse cell fluxes at the coarse/fine grid interface. (b) The interpolation stencil at the coarse/fine grid interface. Coarse cells (s);
ediate values on coarse grid (h); fine cells (d); boundary cells (j) for computing of coarse/fine fluxes.
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standard five point stencil using the boundary cell values pi;j and piþ1;j since this is equivalent to enforcing the
elliptic matching condition at oXc=f .

4.4. A few comments on moving boundaries

Although the focus of this work is on fixed boundaries only, there is nothing wrong in extending the present
method to moving boundaries in the same fashion as many other immersed boundary methods. However, a
few comments are found to be in place.

As the boundaries move across the grid, computational cells inside the solid (or located on one side of a thin
body) at one time step may emerge into the fluid (or appear on the other side of the body) at the next one.
These computational cells contain no correct time history of the velocity field and special treatment is neces-
sary in order to evolve the solution to the next time level. One way is to treat all new velocity points in the
same way as boundary points are treated, i.e. interpolating between active velocity points and the immersed
boundary. This will require interpolation of the pressure gradient as well when solving the pressure equation.
Alternatively, the tentative velocity at these new points can be obtained by extrapolating values from the flow
field without involving the immersed boundary. In that case, the pressure equation can be solved without any
special care regarding the newly emerged grid cells.

Another important challenge is related to the change of the discrete operators as the boundary moves. For
instance, the right hand side of the pressure equation (13) will not necessarily change smoothly in time. This
may result in large fluctuations in the pressure field from one time step to an other. For a moving circular
cylinder with a relatively small time step a rather smooth change in the time evolution of r � u�� can be
expected; however, that is not the case for sharp corners where the discrete operators may change abruptly
from one time step to the next.

5. Numerical results

5.1. Numerical accuracy

The spatial accuracy of the present method is demonstrated by a grid refinement study for a lid-driven cav-
ity containing a circular cylinder. The cavity, shown in Fig. 9(a), is a square box of height H where the cylinder
is located at the centre of the cavity with diameter D ¼ H=2. The horizontal velocity at the top lid is given a
parabolic profile such that the velocity is maximum at the centre and zero at the corners. The Reynolds
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Fig. 9. Numerical accuracy: (a) the lid-driven cavity containing a cylinder. The dashed line box shows the bounded area for error
calculations. (b) The convergence behaviour of the error norms for the velocity components u and v and pressure p. Solid symbols
represent the L1 norm and open symbols represent the L2 norms. The reference lines C1h 	 OðhÞ and C2h2 	 Oðh2Þ correspond to error
norms with first and second order convergence rate, respectively.
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number, based on the mean lid velocity and cavity height, is set equal to Re ¼ 100. This example is similar to
the test case used by [35], except a higher Reynolds number is used in this study.

Five different, uniformly spaced, grids are used for the error analysis. The number of grid points on each
grid are 252; 502; 1002; 2002 and 4002, respectively, where the finest grid solution is considered to be the
benchmark solution. The same time step ðDtU=H ¼ 0:001Þ is used for all grids in order to minimize the effect
of temporal errors on the grid refinement analysis. The motion of the top lid is initiated impulsively and the
simulations are carried out for 10 000 time steps. At the end of the simulations, the errors of the four coarser
grids are quantified as the L1 and L2 norms given by
Table
Rate o

N

25
50

100
200

Table
Rate o

N

25
50

100
200
kENk1 ¼ max
i¼1;nN

p

j/N
i � /e

i j and kENk2 ¼
1

nN
p

XnN
p

i¼1

/N
i � /e

i

		 		2
0
@

1
A

1=2

;

respectively. Here, /N
i denotes a generic flow variable (e.g. velocity components u and v and pressure p) cal-

culated on a N 
 N grid, nN
p denotes the number of active points, and /e

i is the ‘exact’ solution obtained by
interpolating the benchmark solution onto the test grid. The errors are calculated only inside the square
box of size 2H=3 surrounding the cylinder. This is to ensure that the error norms represent the actual error
near the immersed boundary [35].

The results of the grid refinement analysis are summarized in Fig. 9(b). The error norms kENk1 and kENk2

for velocity components u and v and pressure p are plotted against the number of grid cells in each coordinate
direction, N, in a log–log scale. Also plotted are the reference lines C1h and C2h2 corresponding to first and
second order rate of convergence, respectively, where h ¼ 1=N . The two constants C1 and C2 can be chosen
arbitrarily, but for the best illustration of the convergence rate in Fig. 9(b) they are set equal to 0.28 and
3.45, respectively. It can be concluded that the rate of convergence is close to second order, since the slope
of the error norms are close to the slope of C2h2.

This conclusion can be further supported by the formula
c ¼ logðkEN=2k=kENkÞ
logð2Þ ;
which approximates the order of accuracy c such that kENk 	 OðhcÞ, where k � k denotes an error norm. If
c ¼ 2 then the rate of convergence is second order. Tables 1 and 2 show the rate of convergence for the
L1 and L2 norms, respectively. Apparently, both error norms exhibit approximately second order conver-
gence, which reinforce our conclusion above.
1
f convergence calculated for the L1 norm

u v p

kEk1 c kEk1 c kEk1 c

1:067
 10�2 7:507
 10�3 1:473
 10�2

2:370
 10�3 2.17 2:467
 10�3 1.61 3:148
 10�3 2.23
5:884
 10�4 2.01 6:197
 10�4 1.99 7:994
 10�4 1.98
1:107
 10�4 2.41 1:200
 10�4 2.37 1:544
 10�4 2.37

2
f convergence calculated for the L2 norm

u v p

kEk2 c kEk2 c kEk2 c

3:462
 10�3 2:294
 10�3 3:071
 10�3

8:136
 10�4 2.09 6:461
 10�4 1.83 8:023
 10�4 1.94
1:981
 10�4 2.04 1:529
 10�4 2.08 2:116
 10�4 1.92
3:514
 10�5 2.50 2:799
 10�5 2.45 4:331
 10�5 2.29
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5.2. Uniform flow past a circular cylinder

In this section, the present method is used to compute uniform flow past a cylinder of circular cross section.
Circular cylinders exposed to uniform flow has been widely investigated in the past and a large set of data is
available for comparison. We examine the performance of the present approach for Reynolds numbers, based
on the diameter D and the uniform far-field velocity U1, in the range 40–200. This includes flow in the steady,
transitional and unsteady regime where the wake can be assumed to be laminar [64].

To ensure converged results it is necessary to perform a grid dependence study. Here we consider the sen-
sitivity of the calculated drag and lift force due to variations in the grid resolution and domain size. Three
different grids are used in the grid refinement study where the number of local grid refinement levels, lmax,
is equal to six. A systematic refinement procedure is used. That means the areas covered by patches of locally
refined subgrids are fixed before all grid levels are refined subsequently by a factor of two. The base grid cell
spacing on the coarsest grid is Dx ¼ Dy ¼ 2D. Also, the computational domain must be chosen sufficiently
large such that the far field boundaries impose no noticeable effect on the flow. This effect is studied by chang-
ing the length and the width of the computational domain while holding the grid resolution near the cylinder
fixed.

The computational domain can be described as follows: The cylinder is located at ðx; yÞ ¼ ð0; 0Þ, a uniform
inflow condition in the x-direction is prescribed at x ¼ �10D, the top and bottom boundaries ðy ¼ �ymaxÞ are
treated as free-slip walls, and homogeneous Neumann conditions ðou=ox ¼ 0 and ov=ox ¼ 0) are applied to
the velocity field at the outflow boundary downstream of the cylinder at x ¼ xmax where the outlet pressure
is fixed as poutlet ¼ 0. The initial condition is the undisturbed uniform flow followed by an initial projection
step in order to make the velocity satisfy the divergence constraint. In the case of unsteady flow the transition
from a steady to an unsteady condition can be automatically initiated by computer round-off errors; however,
to accelerate the transition to unsteady flow a small perturbation is imposed at the inflow boundary for a rel-
atively short period of time.

Once the computed flow field has converged to a steady or periodic solution, it is possible to extract the time
dependent drag and lift coefficients, defined as
CDðtÞ ¼
F DðtÞ

1
2
qU 2

1D
and CLðtÞ ¼

F LðtÞ
1
2
qU 2

1D
;

respectively, where F DðtÞ is the drag force and F LðtÞ is the lift force. Further, the Strouhal number is defined as
St ¼ fD=U1, where f is the vortex shedding frequency in the unsteady flow regime. The force F ¼ ðF D; F LÞ is
here calculated by direct integration of the pressure and the shear stresses along the immersed boundary, i.e.
F ¼
Z

C
�np þ n � sð ÞdC; ð20Þ
where s is the viscous stress tensor and n is the normal vector pointing into the fluid. An alternative way to
calculate the force is to use the equations for conservation of linear momentum [15,80]. Let S1 by a fixed
closed surface enclosing a control volume V and the immersed boundary. Then integrating the conservative
form of the Navier–Stokes equation over the volume V and applying Gauss theorem we can show that
F ¼ d

dt

Z
V

qudV þ
Z

S1

ðqn � ðuuÞ þ np � n � sÞdS: ð21Þ
This expression is also referred to as the control-volume formulation [80].
Table 3 summarize the grid dependence study for Re = 200. The first three rows show the effect of varying

the grid resolution on the Strouhal number, the time-averaged drag coefficient and the amplitude of the drag
and lift coefficients. A reasonable approximation of the numerical error due to the grid resolution can be
obtained by using Richardson extrapolation. The discretization error is estimated as [16]
�hð/Þ ¼
/h � /2h

2c � 1
; ð22Þ



Table 3
Grid dependence study for uniform flow past a circular cylinder for Re = 200: Cylinder position ðx; yÞ ¼ ð0; 0Þ, outlet position x ¼ xmax and
top and bottom boundaries y ¼ �ymax, minimum grid resolution near cylinder wall Dxmin, Strouhal number St, drag coefficients CD;m
(mean) and CD; a (amplitude), and lift coefficient CL;a (amplitude)

Domain size Grid Results

xmax ymax Base grid D
Dxmin

St CD;m CD;a CL;a

40D 15D 25
 15 32 0.19536 1.34721 0.04306 0.66824
40D 15D 50
 30 64 0.19904 1.36656 0.04568 0.69598
40D 15D 100
 60 128 0.19965 1.37020 0.04626 0.70040
20D 7:5D 30
 15 128 0.20165 1.39039 0.04786 0.71587
60D 22:5D 70
 45 128 0.19935 1.36829 0.04605 0.69717

The time step is equal to DtU1=D ¼ 0:0015 and the number of grid refinement levels, lmax, is 6.
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where /h denotes the solution on a grid where h ¼ Dx ¼ Dy is the base grid cell spacing. An approximation of
the convergence rate is given by
c ¼ logðð/2h � /4hÞ=ð/h � /2hÞÞ
logð2Þ :
It needs to be pointed out that Eq. (22) is only accurate if the grids are sufficiently fine such that monotone and
nearly asymptotic convergence is obtained, the solution is well-behaved without singularities, and the grid
refinement is systematic and substantial. The convergence rate for integral quantities, such as force coeffi-
cients, is usually the same as the theoretical order if the solution is smooth and well-behaved. For more com-
plicated flows, a clear determination of the convergence rate may be difficult to obtain.

The results given in Table 3 converge monotonically towards a limiting value as the grid is refined. The
estimated convergence rates for CD;m;CD;a;CL;a and St are 2.41, 2.17, 2.65 and 2.60, respectively, which are
close to the convergence rate obtained for the flow variables u; v and p in the previous example. Using Eq.
(22) we may define the relative numerical error for a grid variable /h as ��hð/Þ ¼ �hð/Þ=ð/h þ �hð/ÞÞ. Then
the relative error for CD;m and CL;a can be approximated to be about 0.06% and 0.12%, respectively, on the
finest grid. The drag force amplitude coefficient CD;a is somewhat more sensitive to the grid resolution, which
is expected since CD;a � CD;m, where the relative error on the finest grid is about 0.36%. For the Strouhal num-
ber the approximated relative error on the finest grid is only 0.06%.

The force coefficients in Table 3 are based on Eq. (20). We may also use the control-volume formulation (21)
to calculate the drag and lift force on the cylinder. This gives CD;m ¼ 1:37222; CD;a ¼ 0:04638 and CL;a ¼
0:70097 on the finest grid. We notice there is an acceptable agreement between the force coefficients obtained
by both methods and, thus, the conservation of linear momentum is satisfactorily.

The effect of varying the size of the computational domain is demonstrated for the finest grid by the last
three rows in Table 3. The size of the computational domain is given as ð10Dþ xmaxÞ 
 ð2ymaxÞ. We see that
reducing the domain size to 30D
 15D increases CL;a by 2.2% and CD;a by 3.5% as compared to the 50D
 30D
domain. Whereas increasing the domain size to 70D
 45D change CL;a and CD;a by only 0.46% and 0.45%,
respectively. Based on this grid dependence study it is found that the finest grid with the computational
domain size 50D
 30D capture the details of the two-dimensional laminar flow well, and it is used in the cal-
culations below.

5.2.1. Steady case
The flow reaches a steady, symmetric state for Reynolds number equal to 40. Two attached, recirculating

vortices are formed behind the cylinder as shown in Fig. 10 for the upper half of the symmetric flow. The
length of the recirculation zone, the location of the vortex centres and the angle of separation is given in Table
4 where they are compared with experimental and other numerical results. Coutanceau and Bouard [11] eval-
uated experimentally the influence of blockage and extrapolated their data such that results for infinite fluid
domain was presented. The present method predicts a somewhat larger recirculation zone than given by their
extrapolated values, and the predicted horizontal location of the vortex centre is closer to the cylinder than
obtained experimentally by [11]. The computed drag coefficient is also given in Table 4, and it is in reasonable
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Fig. 10. The streamlines for Re = 40 and nomenclature used in Table 4.
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agreement with the experimental value obtained by interpolating the results of [69]. Also, the present results
are found to be within the range of values obtained by other numerical methods.

The drag coefficient can be split into two parts, CD ¼ CDp þ CDm, one component due to pressure and one
component due to viscous stresses, respectively. Henderson [26] showed that both CDp and CDm decrease as a
function of Re in the steady regime, and he approximated his numerical results by simple functions involving
only a two parameter fit (power law) where
Table
Steady
and dr

Couta
Tritton
Calhou
Le et a
Linnic
Russel
Xu an
Herfjo
Presen

a Ex
CDpðReÞ ¼ 2:8676=Re0:2815 and CDmðReÞ ¼ 5:6106=Re0:64:
For Re ¼ 40 this give CDp ¼ 1:015 and CDm ¼ 0:529, which are close to but slightly below our calculated val-
ues of CDp ¼ 1:048 and CDm ¼ 0:544.

Fig. 11(a) compares the normalized wall pressure distribution with the experimental data of [24] and the
numerical results of [12,70]. The normalized pressure coefficient is defined as Cp ¼ ðp � p1Þ= 1

2
qU 2

1 where
p1 ¼ 0 is the ambient pressure. The calculated distribution of surface pressure agrees well with the experimen-
tal and numerical results. Using boundary layer approximations, Grove et al. [24] derived a theoretical expres-
sion for the stagnation pressure coefficient given as
Cp0
¼ 1� m

1
2
U 2
1

ou
ox

					
x¼d;y¼0

¼ 1þ A
Re
þ � � � ;
where d is the boundary layer thickness and the constant A ¼ 8 is obtained from the continuous potential solu-
tion. The stagnation pressure coefficient obtained from the simulation is Cp0

¼ 1:24 which is slightly larger
than the theoretical value Cp0

¼ 1:2 for Re ¼ 40. The distribution of vorticity on the cylinder surface is shown
in Fig. 11(b). Our calculation compares well the numerical results of [8,12,70].
4
uniform flow past a circular cylinder for Re = 40: length L of recirculation zone, location ða; bÞ of vortex centre, separation angle h,
ag coefficient CD (nomenclature given in Fig. 10)

L=D a=D b=D h (deg) CD

nceau and Bouard [11]a 2.13 0.76 0.59 53.5 –
[69]a – – – – 1.57

n [9] 2.18 – – 54.2 1.62
l. [39] 2.22 – – 53.6 1.56

k and Fasel [45] 2.28 0.72 0.60 53.6 1.54
and Wang [58] 2.29 – – 53.1 1.60

d Wang [81] 2.21 – – 53.5 1.66
r [28] 2.25 0.71 0.60 51.2 1.60
t study 2.29 0.72 0.60 53.9 1.59

perimental results. The experimental CD value is obtained by interpolating the results of Tritton [69].



Fig. 11. Normalized (a) pressure and (b) vorticity distribution on the bottom half of the cylinder surface for Re = 40. The upstream
stagnation point is located at h ¼ 180� (nomenclature given in Fig. 10).
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5.2.2. Unsteady case

The transition from steady to unsteady flow occurs at a critical Reynolds number between Re = 40 and 50.
Above this critical value the symmetry of the flow breaks down and a periodic, alternating shedding of vortices
from the cylinder wall occurs. To demonstrate the transition to this large scale 2D instability we consider the
case Re = 50. In this example we do not impose a perturbation at the inflow boundary but instead let round-off
errors in the computation trigger the instability. The time evolution of the lift coefficient is plotted in Fig. 12,
where we see that the oscillations grow for a considerable long time before it stabilize around tU1=D ¼ 2000.
This shows that the present method is fully capable of detecting the onset of vortex shedding, even with only an
infinitesimal artificial disturbance of the flow caused by the round-off errors. At tU1=D ¼ 2120 we decrease the
Reynolds number to Re = 40. Immediately, we notice how quickly the oscillations damp out and, eventually,
vanish. This indicates that the onset of laminar vortex shedding occurs somewhere between these two Reynolds
numbers, and it agrees with results found elsewhere (e.g. [26,39,45,58,61,69]).

The Strouhal number, which characterize the vortex shedding process, is estimated directly from the peri-
odic variation of the lift coefficient. As long as the vortex shedding is regular, this is a preferred approach as
Fig. 12. Onset of laminar vortex shedding: Time evolution of the lift coefficient for Re = 50. Decreasing the Reynolds number to Re = 40
at tU1=D ¼ 2120 damps out the instability.
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compared to using a discrete Fourier transform where a long sampling period of time is required in order to
accurately determine the Strouhal number. Williamson [78] proposed an empirical relation between the par-
allel (2D) shedding frequency and the Reynolds number based on experimental data, where
Table
Unstea
(ampli

William
Calhou
Le et a
Linnic
Russel
Xu an
Herfjo
Presen

a Ex

Fig. 13
200. T
St ¼ 0:00016Reþ 0:1816� 3:3265=Re: ð23Þ

We obtained a Strouhal number equal to 0.128 for Re = 50 in the simulation above. This is about 4% higher
than the empirical value St = 0.123. The calculated Strouhal numbers for Re = 100 and 200 are given in Table
5, where they are compared with experimental and numerical results. The computed St-values are 2.8% and
1.5% larger than the empirical ones for Reynolds numbers equal to 100 and 200, respectively. It should be
noted that the flow undergoes a transition to three-dimensional shedding around Re = 180–194 [79,27] and
there is a discontinuous drop in the Strouhal number as the wake vortices become unstable and generate
large-scale vortex loops. Eq. (23) is therefore not truly valid for Re = 200; however, it gives a smooth contin-
uation of the two-dimensional St–Re relation which is suitable for the purpose of comparison with two-dimen-
sional numerical computations.

The time-averaged normalized pressure and vorticity distributions on the cylinder surface for Re equal to
100 and 200 are presented in Fig. 13. Our calculation compares well with the numerical results of [54] (as given
in [34]) for Re = 100, but there is a larger discrepancy with the results presented by [34], particularly for x near
the location of maximum vorticity.
5
dy uniform flow past a circular cylinder for Re = 100 and 200: Strouhal number St, drag coefficients CD;m (mean) and CD;a

tude), and lift coefficient CL;a (amplitude)

Re = 100 Re = 200

St CD;m CD;a CL;a St CD;m CD;a CL;a

son [78]a 0.164 – – – 0.197 – – –
n [9] 0.175 1.33 0.014 0.298 0.202 1.17 0.058 0.668
l. [39] 0.160 1.37 0.009 0.323 0.187 1.34 0.030 0.43

k and Fasel [45] 0.166 1.34 0.009 0.333 0.197 1.34 0.044 0.69
and Wang [58] 0.169 1.38 0.007 0.300 0.195 1.29 0.022 0.50

d Wang [81] 0.171 1.42 0.013 0.34 0.202 1.42 0.04 0.66
rd [28] 0.168 1.36 – 0.34 0.196 1.35 – 0.70
t study 0.169 1.38 0.010 0.34 0.200 1.37 0.046 0.70

perimental results. The St-values are based on a least-squares curve fit to the experimental data given by Eq. (23).

. Time-averaged normalized (a) pressure and (b) vorticity distribution on the bottom half of the cylinder surface for Re = 100 and
he upstream stagnation point is located at h ¼ 180� (nomenclature given in Fig. 10).
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The contribution from the pressure force, CDp, becomes increasingly important in the unsteady regime, but
the skin friction, CDm, continues to drop as the Reynolds number is increased. This reduction in CDm balance
the increase in CDp such that the total mean drag coefficient remains nearly constant. Henderson [26] fit his
numerical results to the curves
Table
Grid d
near cy

DtU1
D

0.001
0.001
0.001
0.0005

The nu
CDp;mðReÞ ¼ 1:4114� 0:2667Re0:1648 expð�3:375
 10�3ReÞ

and
CDm;mðReÞ ¼ 2:5818=Re0:4369
for the time-averaged force coefficients. In the present calculations we obtained CDp;m ¼
1:028 and CDm;m ¼ 0:349 for Reynolds number equal to 100. The corresponding numbers obtained from the
curve fit above are CDp;m ¼ 1:005 and CDm;m ¼ 0:345. For Reynolds number equal to 200 we obtained
CDp;m ¼ 1:113 and CDm;m ¼ 0:258, and Henderson’s [26] formula give CDp;m ¼ 1:086 and CDm;m ¼ 0:255. As
for the steady case the deviation is slightly larger for the pressure force than the viscous force but in overall
there is a reasonable agreement.

The drag and lift coefficients obtained for Reynolds numbers equal to 100 and 200 are also summarized and
compared with other numerical results in Table 5. The results considered here are found to be within the range
of data presented by others. However, there is a somewhat large scatter in the data reported, and this can be
partly attributed to the difference in the computational setup, e.g. domain size, grid resolution, boundary con-
ditions, and the nature of the numerical methods.

5.3. Impulsively started flow past objects

The impulsively started flow is here considered for a circular cylinder where Re = 550 and for a flat plate
oriented normal to the flow where Re = 126.

5.3.1. A circular cylinder in impulsively started flow

Flow around a circular cylinder at a relatively large Reynolds number of 550 is known to eventually
develop three-dimensional phenomena. However, at an early stage the flow will develop symmetrically about
an axis through the centre of the cylinder in the flow direction and the wake will still be laminar and two-
dimensional. The flow development is here considered only up to tU1=D ¼ 3:0. The computational setup is
the same as in the previous example where the cylinder diameter is D, the height of the domain is 30D and
the total length is 50D. The initial condition is the undisturbed uniform flow with velocity U1 followed by
an initial projection step in order to enforce the divergence constraint.

The instantaneous drag coefficient CD at tU1=D ¼ 1:0 is given for different grid resolutions in Table 6. We
notice that the difference in the drag coefficient obtained by the two finest grid resolutions is less than 0.3%.
Also, as given in Table 6, reducing the time step to half the size changes the drag coefficient by only approx-
imately 0.02%. Fig. 14 presents the normalized pressure coefficient and vorticity distribution on the cylinder
surface together with the radial velocity profile on the symmetry axis behind the cylinder for different grid res-
olutions at tU1=D ¼ 1:0. There is no significant difference in the results produced by the two finest grid res-
olutions. We may conclude from this grid dependence study that the finest grid resolution with time step size
DtU1=D ¼ 0:001 is sufficiently fine for this example, and it is used in the results presented below.
6
ependence study for impulsively started flow past a circular cylinder at dimensionless time tU1=D ¼ 1:0: minimum grid resolution
linder wall Dxmin, drag coefficients CD, time step Dt

Base grid D
Dxmin

CD

50
 30 64 1.14426
100
 60 128 1.13403
200
 120 256 1.13101
200
 120 256 1.13074

mber of grid refinement levels, lmax, is 6.



Fig. 15(a)–(c) shows the instantaneous streamlines and vorticity contours at different points in time. At
tU1=D ¼ 0:5 a pair of primary vortices has been formed behind the cylinder. Then, at tU1=D ¼ 1:5 we notice
the appearance of a pair of small secondary symmetric vortices. These secondary regions grow but remain
attached to the cylinder wall, bounded by the primary vortices, at tU1=D ¼ 2:5. The flow structure compares
reasonable well with the experimental visualization of [5] (as shown in Fig. 15(d) for tU1=D ¼ 2:5) and the
numerical results presented in [25,36,52,65].

The time development of the radial velocity profile on the symmetry axis behind the cylinder is shown in
Fig. 16(a). The behaviour of the present results compare satisfactorily with the measurements presented by [5]
but a small discrepancy is found in the magnitude of the velocity. As shown in Fig. 16(b), our approach pre-
dicts a somewhat lower magnitude of the maximum velocity, jumj, on the symmetry axis in the wake and a
slightly shorter distance from the cylinder to the location of maximum magnitude, dm, than what is measured
in the experiment [5]. It should be noted that in experiments the flow is not actually impulsively started but
quickly accelerated from zero to the given velocity. This partly explains the difference with the numerical pre-
dictions. The present calculations are also compared with the numerical results of [65] for the radial velocity
along the symmetry line in Fig. 16(a).

The evolution of the wake length L and the location of the primary vortex centre ða; bÞ are given in Fig. 17.
The present method predicts a shorter wake length than given by the experimental measurements [5] but agrees
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or re-attachment of the flow, as they appear on the cylinder surface. This clearly indicates the presence of an
attached secondary vortex about 35–45� from the rear stagnation point followed by an evolving tertiary vor-
tical region (as observed by [36,52]) in Fig. 18(b) and (c). We see from Fig. 14(b) and 18(b) that the secondary
vortex appears sometime between tU1=D ¼ 1:0 and 1.5, which agrees with the time reported by [40,65].

5.3.2. A flat plate normal to an impulsively started flow

Next, we consider a flat plate in an impulsively started flow. The computational setup is identical to the
previous example where the circular cylinder is replaced by an infinite thin plate oriented normal to the flow.
The Reynolds number, which is equal to 126, is based on the height, D, of the plate and the uniform free
stream velocity, U1.

Table 7 summarize the grid dependence study for the instantaneous drag coefficient at tU1=D ¼ 1:0. For
the two finest grid resolutions, the difference in drag coefficient is less than 0.07%. Reducing the time step on
the finest grid does not change the drag coefficient noticeably. Fig. 19(a) and (b) shows the normalized pres-
sure and vorticity distribution, respectively, on the plate surface for different grid resolutions at tU1=D ¼ 1:0.
There is virtually no difference in the results for the two finest grid resolutions except for close to the edges of
the plate due to the nearly singular behaviour of the flow. This singularity seems to only have a local effect on
the accuracy, and the area affected decreases as the grid is refined. It should be noted that the pressure and
vorticity are evaluated on the midpoint of the piecewise linear elements which describes the plate geometry.
The size of each element is proportional to the grid resolution. This means that the outermost point evaluated
is much closer to the actual tip of the plate for the finest grid than what it is for a coarser grid such that the
extremal value for a fine grid appears to be much larger than for a coarse grid. It is expected that the actual tip
values of Cp and x are larger than what they appear to be in the plot.

Fig. 19(c) shows the horizontal velocity profile on the symmetry axis behind the plate for different grid res-
olutions. The difference between the two finest grids is negligible small. The singular behaviour near the tips of
the plate does not seem to have any significant influence on the accuracy of the flow far away from the tips.
The finest grid is used in the calculations presented below where DtU1=D ¼ 0:0005.

The time evolution of the wake length L is given in Fig. 20. The present calculation agrees well with the
experimental measurement of [66] up to about tU1=D ¼ 4. At later times, our approach under predicts the
experimental data, but it follows closely to the numerical results presented by [37]. According to [37], it is sus-
pected that the deviation from the measurements is due to the occurrence of three-dimensional effects and the
onset of asymmetry in the experiments.

Instantaneous streamlines based on the present calculations are compared with the streaklines of [66] in
Fig. 21. The computational results are in close agreement with the experimental visualization. Also, the instan-
taneous streamlines and vorticity contours shown in Fig. 22 are in reasonable agreement with the numerical
results presented by [37].

5.4. Objects in harmonically oscillatory flow

In the remaining part of this work we will apply the present technique to planar oscillatory flow around cyl-
inders in infinite fluid. These problems are characterized by the Keulegan–Carpenter number KC ¼ U AT=D and
the Stokes parameter b ¼ Re=KC ¼ D2=mT , where U A and T are the velocity amplitude and period, respectively,
of the ambient oscillating flow, D is the characteristic length scale, and m is the kinematic viscosity.
Table 7
Grid dependence study for impulsively started flow past a flat plate oriented normal to the flow at dimensionless time tU1=D ¼ 1:0:
minimum grid resolution near cylinder wall Dxmin, drag coefficients CD, time step Dt
DtU1

D Base grid D
Dxmin

CD

0.0005 25
 15 32 3.04410
0.0005 50
 30 64 3.06744
0.0005 100
 60 128 3.06953
0.00025 100
 60 128 3.06954

The number of grid refinement levels, lmax, is 6.



Fig. 19. Grid dependence study for impulsively started flow past a flat plate at dimensionless time tU1=D ¼ 1:0: (a) Normalized wall
pressure distribution Cp ¼ ðp � p1Þ= 1

2
qU 2

1 where p1 ¼ 0, (b) normalized wall vorticity distribution, (c) normalized horizontal velocity
profile on the symmetry axis behind the plate.
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Fig. 20. Time evolution of the closed wake length L for a flat plate at Re = 126.
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The in-line force F ðtÞ exerted on an object in the oscillating flow can be approximated by the Morison’s

equation,
F MðtÞ ¼
1

2
qCDD j UðtÞ j UðtÞ þ 1

4
pqD2CM

dU
dt
; ð24Þ
where q is the fluid density, and the free stream velocity is given as
UðtÞ ¼ U A sin xt ¼ U A sin h ð25Þ

for the circular frequency of oscillation x ¼ 2p=T . The drag and mass (inertia) coefficients, CD and CM, can be
determined from the time history of the in-line force by Fourier averaging [33], i.e.
CD ¼
3

8

1
1
2
qU 2

AD

Z 2p

0

F ðhÞ sin hdh and CM ¼
4

qUAp2D2x

Z 2p

0

F ðhÞ cos hdh:
Here, we consider oscillating flow around a circular cylinder, a facing square, and a chamfered plate (see
Fig. 23) at low KC numbers. Theoretical analysis of oscillatory flow around cylinders for small KC numbers
have also been presented in the literature, e.g. [2,15,23,76]. The streamwise force can according to [2] be
F



Fig. 23. Geometrical setup of objects in oscillatory flow. (a) A circular cylinder. (b) A facing square. (c) A chamfered plate.
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obtained by adding the forces for an attached flow with a boundary layer and a separated flow based on a
local vortex shedding model at each sharp edge of the cylindrical cross section. They presented an approxima-
tion to the force coefficient to the order Oðb�1=2Þ. Their approach is briefly outlined below.

If the Reynolds number is sufficiently large, the Keulegan–Carpenter number is small and the flow remains
attached, then the flow can be described by an outer inviscid flow and an inner viscous laminar boundary
layer. A first approximation of the outer inviscid flow can be analysed by neglecting the boundary layer. This
potential flow contributes to a pressure force which is related to the acceleration of the fluid past the cylinder,
and it can be expressed as
F 0

1
2
qU 2

AD
¼ ðqAp þ A11Þ

1
2
qU 2

AD

dU
dt
¼ ðqAp þ A11Þ

qD2

4p
KC

cos xt;
where A11 is the added mass coefficient in the ambient flow direction and Ap is the cross sectional area.
The attached boundary layer is analysed by solving Stokes’ second problem where we assume that the

potential flow solution outside the boundary layer can be written as [15]
U eðs; tÞ ¼ UoðsÞ sin xt
for the local coordinate s along the cylinder surface. It is here assumed that the oscillatory amplitudes are
small such that quadratic terms in the boundary layer equations can be neglected. The resulting non-dimen-
sional force due to skin friction can then be written as
F f

1
2
qU 2

AD
¼ 2

ffiffiffi
2
p

p

KC
ffiffiffiffiffiffi
pb
p 1

U AD

Z
S

U oðsÞnx ds sin xt þ p
4

� �
;

where nx is the directional cosine with respect to the x-axis. The theory gives zero force F nm due to normal vis-
cous stresses (this follows from the continuity equation). The boundary layer flow causes an outflow/inflow to
the potential domain which influence the pressure. This effect on the streamwise force is equal to the contri-
bution from the frictional force [2]. The total force due to the boundary layer can therefore be expressed as
F BL

1
2
qU 2

AD
¼ 2F f

1
2
qU 2

AD
¼ 4

ffiffiffi
2
p

p

KC
ffiffiffiffiffiffi
pb
p 1

UAD

Z
S

UoðsÞnxds sin xt þ p
4

� �
:

The boundary layer approximation for general curved-wall flows is valid as long as the boundary layer thick-
ness is small compared to the wall radius of curvature [80]. But this is not the case at a sharp edge as sharp
edges invite immediate flow separation. Unless the separation effects on the body are confined to small regions
near the edges then attached flow will not give an adequate prediction of the inviscid potential flow near the
surface, and hence of the boundary-layer thickness d99%. Therefore, the predicted skin friction is likely to be in
considerably error for these cases [2].

The final component of the streamwise force originate from the flow separation of the boundary layer lead-
ing to shedding of vortices. Bearman et al. [2] investigated only the effect of flow separation at sharp edges. For
smooth, continuous surfaces, such as a circular cylinder, the flow will remain attached for KC numbers below
a certain critical value depending on the Stokes parameter b and the shape of the body. On the other hand, the
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flow will separate in the case of a sharp-edged cylinder even at low KC numbers. The shed vorticity is assumed
to be concentrated in thin free shear layers, and the shedding at any edge is independent of the shedding at the
other edges. The vortex shedding may be approximated by a discrete vortex method where the detailed bound-
ary flow is neglected. Only the vorticity flux in the boundary layer at the separation point is needed. This is
equal to half the square of the potential flow velocity at the separation point. However, there are potential
errors due to the fact that a discrete vortex model is a numerical approximation of continuous thin free shear
layers. The time rate of shed vorticity from a thin boundary layer into a thin free shear layer tends to be larger
than in reality. The consequence is an overestimated drag force. Further, the effect of diffusion of vorticity in
the free shear layer is neglected in such an approach.

5.4.1. A circular cylinder in oscillatory flow

The first example considered is a circular cylinder in infinite fluid. Numerical results are produced for KC
numbers in the range 0.4–4. The Stokes parameter b is equal to 1035, which corresponds to the U-tube exper-
iments of [62]. The cylinder’s diameter is D, and it is located at the centre of the computational domain with
the size 40D
 40D. The fluid is initially at rest. An oscillating inflow condition given by Eq. (25) is imposed at
the left boundary, free-slip is applied at the top and bottom boundaries, and homogeneous Neumann condi-
tions ðou=ox ¼ 0 and ov=ox ¼ 0Þ are used for the velocity components at the right boundary where the outlet
pressure, poutlet, is equal to zero. The flow is assumed to be symmetric for KC 6 2 such that only the upper half
of the computational domain is considered in the numerical computations.

The grid dependence study for KC equal to 2 is summarized in Table 8, where we consider the sensitivity of
the calculated in-line force due to variations in the grid resolution, time step and domain size. The data pre-
sented are given for one oscillation period sampled from the tenth cycle. The in-line force is here represented
by the drag and mass coefficients in Morison’s equation. Three different grids are used in the grid refinement
study where the number of refinement levels is eight. A systematic refinement procedure is used. The base grid
cell spacing on the coarsest grid is Dx ¼ Dy ¼ 2:5D.

We notice from the first three rows of Table 8 that the force coefficients converge to a limiting value as the
grid is refined. The variations are small as we go from the coarsest to the finest grid; however, the drag coef-
ficient is more sensitive to the grid resolution than the mass coefficient. The difference between the two finest
grids is about 2.1% for CD, whereas the difference in CM is only 0.066%. The reason for this is that the in-line
force is nearly in phase with the acceleration of the fluid for low KC numbers such that Morison’s equation is
dominated by the mass term and, therefore, the extracted CD-coefficient is very sensitive to even small errors in
the force calculation.

A grid independent solution may be approximated by
Table
Grid d
Dt, mi

Doma

40D

40D

40D

40D

80D

/0 ¼ /h þ �hð/Þ; ð26Þ

where the numerical error �h is obtained using the Richardson extrapolation formula (22). Table 9 presents the
calculated drag and mass coefficients obtained on the finest grid and the corresponding grid independent solu-
tions for KC numbers in the range 0.4–2. The relative numerical error is about one magnitude larger for CD

than for CM. It remains below 0.6% for CD up to KC = 1.7, and it is about 1.2% for KC = 2. This sudden
increase in the relative numerical error can be explained by the growing importance of flow separation and
vortex shedding for larger KC numbers, which requires finer grid resolution further away from the cylinder
8
ependence study for harmonically oscillating flow past a circular cylinder for b ¼ 1035 and KC = 2: oscillation period T, time step
nimum grid resolution near cylinder wall Dxmin, drag coefficients CD, and mass coefficient CM

in size Time step Grid Results

T
Dt Base grid D

Dxmin
CD CM

20D 2500 16
 8 102.4 0.64669 2.03996
20D 2500 32
 16 204.8 0.61077 2.04374
20D 2500 64
 32 409.6 0.59797 2.04509
20D 4000 64
 32 409.6 0.59799 2.04509
20D 2500 128
 32 409.6 0.59796 2.04508



Table 9
Calculated force coefficients for a circular cylinder in oscillating flow where b ¼ 1035: Drag coefficient CD;h and mass coefficient CM;h

obtained on the finest grid, estimated grid independent drag coefficient CD;0 and mass coefficient CM;0, and the relative error ��h

KC CD;h CD;0 ��hðCDÞ (%) CM;h CM;0 ��hðCMÞ (%)

0.4 2.10492 2.09651 �0.40 2.07029 2.07089 0.029
0.5 1.69429 1.68817 �0.36 2.07018 2.07078 0.029
0.7 1.23060 1.22646 �0.34 2.06978 2.07039 0.029
0.8 1.08837 1.08469 �0.34 2.06948 2.07008 0.029
1.0 0.89418 0.89089 �0.37 2.06858 2.06915 0.028
1.5 0.66025 0.65723 �0.46 2.06301 2.06344 0.021
1.7 0.61768 0.61413 �0.58 2.05834 2.05872 0.019
1.7a 0.61770 0.61409 �0.59 2.05834 2.05870 0.018
2.0 0.59797 0.59088 �1.20 2.04509 2.04583 0.037
2.0a 0.59802 0.59095 �1.20 2.04509 2.04580 0.035

a Means that numerical symmetry is not imposed.
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surface in order to maintain the accuracy. But still, the predicted numerical errors are considered to be accept-
able. We may also notice that imposing numerical symmetry has virtually no effect on the calculated force
coefficients as shown in Table 9 for KC = 1.7 and 2.

Increasing the number of time steps per oscillation period to 4000 for the finest grid has no significant effect
on the numerical results as shown in the fourth row of Table 8. This suggest that 2500 time steps per period
should be sufficient in order to maintain a certain accuracy in the time-stepping procedure. Fewer steps per
period was not possible as the time step was governed by numerical stability constraints on the finest grid mak-
ing it necessary to keep the number of time steps per period equal to 2500. Extending the length of the com-
putational domain does not influence the numerical results any noticeable as shown in the fifth row. It is
therefore expected that the length of the computational domain is large enough for KC 6 2.

For a circular cylinder we may write a first approximation of the potential flow solution outside the bound-
ary layer as
U eðh; tÞ ¼ 2U A sin h sin xt;
such that
Z
S

U oðsÞnx ds ¼ U AD
Z 2p

0

sin2 hdh ¼ U ADp:
The non-dimensional frictional force in the ambient flow direction as obtained from the solution of Stokes’
second problem may then be expressed as
F f

1
2
qU 2

AD
¼ 2

ffiffiffi
2
p

p2

KC
ffiffiffiffiffiffi
pb
p sin xt þ p

4

� �
:

The comparison between this theory and our numerical calculations of the corresponding non-dimensional
frictional force amplitude Cf ;a is presented in Table 10. The boundary layer thickness can be estimated by
[15,80]
d99% ¼ 4:605

ffiffiffiffiffi
2m
x

r
¼ 4:605Dffiffiffiffiffiffi

pb
p ;
which gives d99% ¼ 0:081D when b ¼ 1035. Although we can hardly claim that the examined case has a thin
boundary layer, the agreement between the theoretical and numerical calculations of the frictional force ampli-
tude seem to be good. The calculated non-dimensional force amplitude Cnm;a due to normal viscous stresses is
also presented in Table 10. It should be noted that there are some uncertainties related to the calculated Cnm;a

as the grid dependence study could not reveal a converged solution. Instead, the non-zero normal viscous force
coefficient given in Table 10 is based on Richardson extrapolation. After all, the only purpose is to show that
this component is negligible small compared to the skin friction, which coincides with the theoretical value of a



Table 10
Comparison of numerical and theoretical coefficients of frictional force amplitude Cf ;a, normal viscous force amplitude Cnm;a, pressure force
amplitude due to the boundary layer CBL

p;a, and frictional force phase lead relative to the ambient flow velocity am

KC Theory Present

Cf ;a Cf ;a Cnm;a am CBL
p;a

0.4 1.224 1.233 3:0
 10�4 0.775 1.241
0.5 0.979 0.988 2:6
 10�4 0.776 1.004
0.7 0.699 0.709 2:2
 10�4 0.776 0.739
0.8 0.612 0.622 2:1
 10�4 0.777 0.659
1.0 0.490 0.501 2:1
 10�4 0.778 0.552
1.5 0.326 0.342 2:3
 10�4 0.777 0.436
1.7 0.288 0.305 2:4
 10�4 0.776 0.422
2.0 0.245 0.266 2:7
 10�4 0.779 0.436
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zero force due to normal viscous stresses. Since the normal velocity outside the boundary is not zero, the dis-
cretized expression for the normal derivative will most likely take a non-zero value and, hence, the calculated
normal viscous stresses will not be exactly zero at the boundary. The theoretical frictional force phase lead
relative to the ambient flow velocity am is p=4 � 0:785. As shown in Table 10, the numerically calculated value
for am agrees well with the theoretical phase angle.

According to the theory, the streamwise pressure force due to the boundary layer is equal to the frictional
force. Ignoring the effect of flow separation, we may extract the contribution to pressure force due to the
boundary layer by considering the component of the pressure force which is in phase with the velocity. The
non-dimensional pressure force amplitude due to the boundary layer CBL

p;a obtained from the numerical simu-
lations are given in Table 10. We notice that there is close agreement between CBL

p;a and Cf;a for KC 6 0:8; how-
ever, these numbers are only approximate as, strictly speaking, there is a contribution to the pressure force due
to flow separation which is in phase with the velocity. Although this contribution is small, it becomes more
important as the Keulegan–Carpenter number is increased.

The added mass coefficient for a circular cylinder is A11 ¼ qpD2=4. Then, ignoring the possibility of flow
separation, adding the contribution from the outer potential flow with the effect from the boundary layer gives
the total streamwise force as
F t

1
2
qU 2

AD
¼ 2p2

KC
þ 4p2

KC
ffiffiffiffiffiffi
pb
p

� �
cos xt þ 4p2

KC
ffiffiffiffiffiffi
pb
p sin xt:
In terms of Morison’s equation (24), noting that j sin hj sin h may be approximated by ð8=3pÞ sin h over a flow
cycle, the force coefficients can be expressed as
CD ¼
3p3

2KC
ðpbÞ�1=2 ð27Þ
and
CM ¼ 2þ 4ðpbÞ�1=2
: ð28Þ
Wang [76] investigated theoretically an oscillating circular cylinder in an otherwise still fluid using the
method of inner and outer expansion. His analysis shows that for a stationary circular cylinder in oscillating
flow we may write the drag and mass coefficients as
CD ¼
3p3

2KC
ðpbÞ�1=2 þ ðpbÞ�1 � 1

4
ðpbÞ�3=2

� �
ð29Þ
and
CM ¼ 2þ 4ðpbÞ�1=2 þ ðpbÞ�3=2
: ð30Þ
Wang’s [76] solution is valid for KC � 1;Re � KC � 1 and b
 1, primarily when the flow is two-dimen-
sional, laminar and attached. Eqs. (29) and (30) differ from (27) and (28) only in the higher order terms
ðpbÞ�1 and ðpbÞ�3=2. Both Stokes’ and Wang’s [76] solutions yield nearly identical results for large values
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of b. Table 11 compares the drag coefficients for b ¼ 1035 based on the present numerical calculation and the
theoretical analyses for a selection of low KC numbers. The corresponding value for the theoretical mass coef-
ficient CM is 2.070. The numerically obtained drag coefficients are somewhat larger then the theoretical ones,
but Wang’s [76] result agree well with the numerical predicted drag coefficient at the lowest Keulegan–Carpen-
ter numbers.

Calculated drag and mass coefficients are compared with theoretical [76] and experimental values [62] in
Fig. 24. Both the numerical and experimental results follow the theoretical curves for small KC numbers until
an abrupt deviation occurs for the measured drag coefficient at a critical Keulegan–Carpenter number
KCcr � 0:7. Experimental observations [62] showed that beyond this point an axially instability had occurred.
This instability was observed by Honji [29] and later referred to as the Honji instability by Sarpkaya [62] which
is a transition from a two-dimensional to a three-dimensional wake. The experimental drag coefficient remains
nearly unchanged for KC numbers between 0.65 and 0.8, before it continues to drop parallel with the theo-
retical curve until a minimum drag is reached at KCmd � 1:6. According to Sarpkaya [62] CD reaches its min-
imum value approximately when the boundary layer becomes turbulent (KCt � 1:7). The numerically obtained
CD coefficient starts to deviate from the theoretical line near KCcr. This deviation is not sudden nor as large as
for the experimental data, which is anticipated as the Honji instability is a three-dimensional effect. The min-
imum drag occurs at KC � 2, which is somewhat later than observed in the experiment. The calculated CM

values agree well with theory for KC < 2, but they are slightly larger than the measured data.
The drag coefficient start to increase and the mass coefficient shows a small drop as KC continues to

increase beyond the minimum drag. The effect of flow separation and vortex shedding become increasingly
important for these Keulegan–Carpenter numbers, and the flow is now asymmetric and irregular. The force
coefficients may undergo large variations from cycle to cycle and the characteristics of the flow may change
even after a long time. The sampled data will be very sensitive to the time window they are collected from.
Consequently, a long sampling period is necessary in order to get a statistically good representation of the
Table 11
Comparison of numerical and theoretical drag, CD, for a circular cylinder, b ¼ 1035

KC CD

Present Stokes Wang

0.4 2.097 2.039 2.075
0.5 1.688 1.631 1.660
0.7 1.226 1.165 1.186
1.0 0.891 0.816 0.830

Fig. 24. Drag and mass coefficients for a circular cylinder in oscillating flow where b ¼ 1035.
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mean drag and mass coefficients. Therefore, a proper grid dependence study is not practical for large KC num-
bers, meaning that there is an increased uncertainty about the accuracy of the numerical results. However,
transition to turbulence has already occurred at KCmd, and it is not expected that the numerical simulations
should reproduce the experimental results correctly. The computational results for the higher Keulegan–Car-
penter numbers are merely included in order to illustrate that we do obtain a nearly similar tendency from the
two-dimensional laminar calculations as found in the measurements.

5.4.2. A facing square section in oscillatory flow

Next, we consider a square section in infinite fluid facing the flow direction. Numerical results are produced
for Keulegan–Carpenter number in the range 0.1–4 with b ¼ 213. The computational setup is similar to the
one used for the circular cylinder where the width of the square section is D. We assume the flow is symmetric
for KC 6 1:5.

Three different grids are used in the grid dependence study. The number of refinement levels is equal to 7,
where the base grid cell spacing is Dx ¼ Dy ¼ 2D on the coarsest grid. The number of time steps per period is
restricted by the numerical stability constraints on the finest grid, and it is here equal to 2500 steps per period.
The data presented are sampled from the twentieth oscillation cycle, where we expect the flow to have reached
a nearly stationary periodic state. Table 12 shows that the drag and mass coefficients for KC = 1.5 converge
monotonically as the grid is refined. For the same reason as for the circular cylinder, the drag coefficient is
more sensitive to the grid resolution than the mass coefficient. The difference is about 2.8% for CD obtained
on the two finest grids. The corresponding difference for CM is only 0.11%. The calculated drag and mass coef-
ficients obtained on the finest grid are presented in Table 13 for KC 6 1:5 together with the corresponding grid
independent solution estimated by the Richardson extrapolation (see Eq. (26)). The predicted numerical error
is low for the smallest KC numbers. However, it grows up to about 1.6% for the drag coefficient at KC = 1.5.
This increase is due to the growing importance of flow separation for larger KC numbers. Nevertheless, the
error remains low for CM, and since the in-line force is dominated by the mass term in Eq. (24) we consider
the accuracy to be acceptable. Also, introducing numerical symmetry does not influence the result any signif-
icantly as demonstrated for KC = 1.2 and 1.5 in Table 13.
Table 13
Calculated force coefficients for a facing square in oscillating flow where b ¼ 213: Drag coefficient CD;h and mass coefficient CM;h obtained
on the finest grid, estimated grid independent drag coefficient CD;0 and mass coefficient CM;0, and the relative error ��h

KC CD;h CD;0 ��hðCDÞ (%) CM;h CM;0 ��hðCMÞ (%)

0.1 24.3659 24.3592 �0.028 2.99464 2.99523 0.020
0.2 12.4959 12.4903 �0.045 2.99405 2.99469 0.022
0.5 5.68986 5.67969 �0.18 2.99335 2.99335 0.0
0.7 4.50029 4.48453 �0.35 2.99739 2.99693 �0.015
1.0 3.68165 3.65560 �0.71 3.01260 3.01027 �0.077
1.2 3.45594 3.42076 �1.03 3.02685 3.02314 �0.12
1.2a 3.45749 3.42198 �1.04 3.02694 3.02314 �0.13
1.5 3.47301 3.41737 �1.63 3.05153 3.04905 �0.082
1.5a 3.47417 3.41827 �1.64 3.05163 3.04909 �0.083

a Means that numerical symmetry is not imposed.

Table 12
Grid dependence study for harmonically oscillating flow past a facing square for b ¼ 213 and KC = 1.5: oscillation period T, time step Dt,
minimum grid resolution near cylinder wall Dxmin, drag coefficients CD, and mass coefficient CM

Domain size Time step Grid Results

T
Dt Base grid D

Dxmin
CD CM

40D
 20D 2500 20
 10 64 3.84627 3.06308
40D
 20D 2500 40
 20 128 3.57184 3.05495
40D
 20D 2500 80
 40 256 3.47301 3.05153
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It follows from a Schwartz–Christoffel transformation that [2]
Table
Comp
force p

KC

0.1
0.2
0.5
0.7
1.0
1.2
1.5
1

U AD

Z
S

U oðsÞnx ds ¼ 3:34
and we may write the non-dimensional frictional force in the ambient flow direction as
F f

1
2
qU 2

AD
¼ 16:744

KC
ffiffiffi
b
p sin xt þ p

4

� �
:

Table 14 presents the comparison between the numerical and the theoretical non-dimensional frictional force
amplitude. The agreement is found to be satisfactory at the lowest Keulegan–Carpenter numbers where the
effect of flow separation is restricted to small regions near the corners. The estimated magnitude of the normal
viscous force amplitude, given in Table 14, shows that this component is small compared to the frictional
force. For KC P 0:7 it was not possible to extract a grid independent solution for Cnm;a using the Richardson
extrapolation since this approach predicted a negative amplitude. But it should be noted that the calculated
value for Cnm;a decreased as the grid was refined. For instance, at KC = 1.5 we obtained Cnm;a ¼ 0:0529,
0.0355 and 0.0207, respectively, on the three different grids starting with the coarsest. The numerical estima-
tion on the finest grid can still be considered to be small compared to the skin friction force amplitude. There is
a satisfactory agreement between the calculated frictional phase angle am and the theoretical value, which is
approximately 0.785, at the lowest KC numbers. The calculated frictional force phase lead relative to the ambi-
ent flow velocity increases with KC as shown in Table 14.

The total streamwise force due to the boundary layer may be written in terms of Morison’s Eq. (24) as [2]
CDBL ¼
27:90

KC
ffiffiffi
b
p and CMBL ¼

2:40ffiffiffi
b
p :
Then from a Schwartz–Christoffel transformation the added mass coefficient, A11, is found to be 1:189qD2.
This contributes CMo ¼ 2:787 to the total mass coefficient, CM, due to the outer inviscid flow. The effect of
vortex shedding in terms of the in-line force coefficients may be written as [2]
CDv ¼ 4:159 and CMv ¼ �0:417KC:
The total streamwise force coefficients for a facing square section may then be expressed as
CD ¼ 4:159þ 1:91

KC
and CM ¼ 2:951� 0:417KC
when b ¼ 213.
Fig. 25 compares the calculated mass and drag coefficients with the experimental and theoretical results of

Bearman et al. [2] and the numerical results of Herfjord [28]. We note that the theoretical CD coefficient is in
good agreement with our predictions for KC 6 0:2. For larger KC numbers the drag coefficients based on our
numerical method drops more rapidly than the theoretical curve and predicts a lower drag coefficient. The
mass coefficients obtained from our numerical calculations remain nearly constant for KC 6 1. There is a
14
arison of numerical and theoretical coefficients of frictional force amplitude Cf ;a, normal viscous force amplitude Cnm;a, and frictional
hase lead relative to the ambient flow velocity am

Theory Present

Cf ;a Cf ;a Cnm;a am

11.47 11.16 6:1
 10�2 0.793
5.734 5.579 2:9
 10�2 0.800
2.294 2.219 2:6
 10�3 0.842
1.638 1.566 – 0.889
1.147 1.065 – 0.986
0.956 0.880 – 1.052
0.765 0.713 – 1.125



Fig. 25. Drag and mass coefficients for a facing square section in oscillating flow where b ¼ 213.
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small, but growing increase in CM for larger Keulegan–Carpenter numbers. On the contrary, the theoretical
CM curve has a negative slope predicting much lower values for the mass coefficient. An important error
source in the theoretical method is believed to be associated with the predictions of the contribution from flow
separation. The present results compare well with the data of Herfjord [28]; however, the computed
CD and CM coefficients are slightly larger than those obtained from the measurements [2].

For KC P 2 the flow is no longer symmetric and regular, such that the sampled data becomes very sensitive
to the time window which they are collected from. For these Keulegan–Carpenter numbers, there is larger
uncertainty about the numerical accuracy. Also, there are possibilities of turbulence and other three-dimen-
sional effects in the experiments which may lead to differences to the two-dimensional laminar calculations.
As for the circular cylinder, it is not expected that the numerical results should reproduce the experimental
data properly. Thus, the numerical results for higher KC numbers are presented only to show that the trends
of the calculated two-dimensional force coefficients are similar to the experimental ones.

5.4.3. A chamfered plate in oscillatory flow

In the final example, we consider oscillatory flow around a chamfered plate facing the flow, as illustrated in
Fig. 23, which is identical to the one used in the experiment described by Bearman et al. [2]. The computational
setup is similar to the ones used in the previous two examples. The Stokes parameter b is equal to 439, and
numerical calculations are performed for KC numbers in the range 0.1–4 where D is the height of the plate.
We have enforced numerical symmetry for KC 6 0:5.

Table 15 summarize the grid dependence study for KC = 0.5. The data presented are given for one period
sampled from the twentieth oscillation cycle. Three different grid resolutions are considered where the grid cell
spacing on the coarsest grid is Dx ¼ Dy ¼ 2:5D and the number of refinement levels are 8. The number of time
steps per period is set equal to 5000 due to numerical stability constraints. We notice that the differences in the
obtained force coefficients decrease as the grid is refined. Unfortunately, the mass coefficient does not show a
Table 15
Grid dependence study for harmonically oscillating flow past a chamfered plate for b ¼ 439 and KC = 0.5: oscillation period T, time step
Dt, minimum grid resolution near cylinder wall Dxmin, drag coefficients CD, and mass coefficient CM

Domain size Time step Grid Results

T
Dt Base grid D

Dxmin
CD CM

40D
 20D 5000 16
 8 102.4 8.48910 1.30029
40D
 20D 5000 32
 16 204.8 8.13506 1.30505
40D
 20D 5000 64
 32 409.6 8.00830 1.30293
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monotone convergence. The flow is nearly singular at the edge of the plate such that monotone convergence is
not necessarily possible to obtain, even with further grid refinements. The consequence is that we can not esti-
mate the order of convergence, c, which we need for the Richardson extrapolation (22) to approximate the
numerical error. However, the differences between the force coefficients obtained on the two finest grids are
already small such that the numerical error on the finest grid is expected to be small.

A conservative approach to approximate the numerical error is to use a low order convergence rate, for
instance c ¼ 1. After all, the Richardson extrapolation gives only an approximate estimation of the numerical
error and the only purpose is to provide a reasonable guess on the accuracy of the numerical results. Table 16
presents a rough estimation of the relative numerical error based on c ¼ 1 for KC 6 0:5. We notice that the
predicted numerical error is very low for KC 6 0:2. It is somewhat larger for KC equal to 0.4 and 0.5, but still
acceptable as the streamwise force is dominated by the mass term in Eq. (24) and the error remains low for
CM.

The non-dimensional frictional force in the ambient flow direction may be written as [2]
Table
Calcul
on the

KC

0.1
0.2
0.4
0.5

Table
Comp
force p

KC

0.1
0.2
0.4
0.5
F f

1
2
qU 2

AD
¼ 4:081

KC
ffiffiffi
b
p sin xt þ p

4

� �
:

The comparison between the numerical and theoretical frictional force amplitude coefficient Cf ;a together
with the calculated Cnm;a coefficient and the frictional phase lead am are given in Table 17. The agreement be-
tween the theoretical and numerical frictional force amplitude is good for KC 6 0:2. For larger Keulegan–
Carpenter number the theory predicts a much lower value for the frictional force than what is obtained by
the present numerical method. The estimated normal viscous force is small compared to the frictional force
for all cases. The calculated phase lead is larger than the theoretical value of approximately 0.785. The agree-
ment with theory is fairly acceptable for KC = 0.1, but the discrepancy is somewhat larger for the other cases.

The mass coefficient based on potential flow theory for the present chamfered plate is CMo ¼ 1:169. The
contribution to the force coefficients from the boundary layer is CMBL ¼ 0:028 and CDBL ¼ 0:325=KC for
b ¼ 439. The effect of vortex shedding may be written as CDv ¼ 7:761KC�1=7 and CMv ¼ �0:042KC6=7 such
that the total in-line force coefficients for a chamfered plate can be expressed as [2]
CD ¼ 7:761KC�1=7 þ 0:325

KC
and CM ¼ 1:197� 0:042KC6=7:
As shown in Fig. 26, the numerically calculated CD coefficient agrees well with the theoretical curve for
KC = 0.1. The theoretical curve has a steep negative slope at small Keulegan–Carpenter numbers; however,
16
ated force coefficients for a chamfered plate in oscillating flow where b ¼ 439: Drag coefficient CD and mass coefficient CM obtained
finest grid, relative error ��h based on c ¼ 1

CD ��hðCDÞ (%) CM ��hðCMÞ (%)

13.2043 0.31 1.27421 �0.025
8.25450 �0.21 1.27423 �0.060
7.61011 �1.43 1.29046 �0.13
8.00830 �1.58 1.30293 �0.16

17
arison of numerical and theoretical coefficients of frictional force amplitude Cf ;a, normal viscous force amplitude Cnm;a, and frictional
hase lead relative to ambient flow velocity am

Theory Present

Cf ;a Cf ;a Cnm;a am

1.948 1.910 4:4
 10�2 0.857
0.974 0.987 2:2
 10�2 0.934
0.487 0.577 1:1
 10�2 1.027
0.390 0.487 8:0
 10�3 0.984



Fig. 26. Drag and mass coefficients for a chamfered plate in oscillating flow where b ¼ 439.
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the numerically calculated drag coefficient drops more rapidly and there is a large discrepancy between the
theory and the present method for 0:1 < KC < 1:0. At larger KC numbers the theoretical curve fits closely
to the CD coefficients obtained by the numerical method. The calculated drag coefficients are close to the
numerical results obtained by [72], but they are somewhat larger than the experimental data presented by
[2]. Fig. 26 shows that the theory predicts a much lower CM coefficient than what is obtained by experimental
measurements and numerical methods. The present numerical method gives a nearly constant mass coefficient
for the lowest Keulegan–Carpenter numbers. Thereafter, it grows for larger KC numbers, except for a small
adjustment in the trend at KC � 3. The mass coefficients based on the present numerical method agree well
with [72], except for KC = 1. Both numerical methods tend to over predict the measured CM coefficients, par-
ticularly at the intermediate KC numbers. It should be pointed out that the flow is asymmetric and irregular
for KC P 1:0, meaning that the force coefficients are very sensitive to the choice of sampling period and a long
simulation time is required. A grid dependence study is therefore not affordable for larger KC numbers, result-
ing in an increased uncertainty about the numerical accuracy. For these Keulegan–Carpenter numbers, it is
likely that the vortices shed from the edge of the plate rapidly becomes three-dimensional due to spanwise
instabilities and, eventually, become turbulent. As for the two previous examples, the two-dimensional lami-
nar calculations will in that case not necessarily capture all the correct details of the flow from the experiment,
but we may notice that it follows a nearly similar trend.

6. Summary and conclusion

An immersed boundary method for solving the incompressible Navier–Stokes equation in irregular
domains has been presented. The solid boundary has been treated by a local one-dimensional ghost cell
approach. This method smoothly extends the solution across the boundary along the same direction as the
discretization it will be used for. The local feature of the present method allows for highly irregular boundaries
(e.g. sharp corners) to be treated accurately. A local, block structured grid refinement technique has been
adopted in order to enhance the computational efficiency. Numerical experiments have shown that the spatial
accuracy of the numerical method is second order.

We have applied the present technique to a series of test problems involving steady and unsteady flow past
stationary objects. This includes uniform flow past a circular cylinder, impulsively started flow past a circular
cylinder and a flat plate, and planar oscillating flow past a circular cylinder, a facing square and a chamfered
plate. For the uniform flow past a circular cylinder, we showed that our method is capable of detecting the
onset of flow instability. Calculated force coefficients and Strouhal numbers are found to be well within the
range of data reported by others. In the case of impulsively started flow, we demonstrated that our approach
is fully capable of predicting the time evolution of the wake behind a stationary object. The local solutions of
the flow compared satisfactorily with both experimental measurements and other numerical methods.
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For a circular cylinder in oscillating flow we obtained good agreement with attached flow theory at low
Keulegan–Carpenter numbers. For larger KC numbers the theory is no longer valid as separation and vortex
shedding has become more important. The calculated drag and mass coefficients showed good agreement with
experimental results for small KC numbers where the flow is attached, laminar and strictly two-dimensional.
Due to three-dimensional effects there was a small difference between numerical and experimental results for
larger KC numbers, but the trend was otherwise nearly similar.

In the case of a sharp-edged cylinder, such as a square and a plate, the flow will separate even at small KC

numbers. However, numerical simulations compare satisfactorily with attached flow theory at the lowest KC

numbers where the effect of flow separation is concentrated near the edges. The calculated drag and mass coef-
ficients are somewhat larger than those obtained from experiments. In the range of KC numbers where exper-
imental data are available it is believed that three-dimensional effects are present. In that case, it is not
expected that the present two-dimensional laminar approach should reproduce the measurements properly,
but the trends seem to be similar and our results are comparable with other numerical methods.

In the present work we have only applied our method to two-dimensional flow problems, but we believe
that an extension to three-dimensional problems is rather straight forward. Following the concept described
in this work, the immersed boundary can be treated by one-dimensional extrapolation in the third dimension
as well.
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loo.ansys.com/European_Projects/alessia/papers/D5.17_6_Thesis_Tremblay.pdf>.

[68] F. Tremblay, R. Friedrich, An algorithm to treat flows bounded by arbitrarily shaped surfaces with Cartesian meshes, in: Proceedings
of AGSTAB Conference, University of Stuttgart, Germany, 15–17th November, 2000.

[69] D.J. Tritton, Experiments on the flow past a circular cylinder at low Reynolds numbers, J. Fluid Mech. 6 (1959) 547–567.
[70] Y.-H. Tseng, J.H. Ferziger, A ghost-cell immersed boundary method for flow in complex geometry, J. Comput. Phys. 192 (2) (2003)

593–623.
[71] Y.-H. Tseng, J.H. Ferziger, Large-eddy simulation of turbulent wavy boundary flow – illustration of vortex dynamics, J. Turbulence 5

(2004).
[72] R. Tønnessen, A finite element method applied to unsteady viscous flow around 2D blunt bodies with sharp corners, Dr.Ing.-Thesis,

Norwegian University of Science and Technology, Department of Marine Hydrodynamics, Trondheim, Norway, 1999.
[73] H.S. Udaykumar, W. Shyy, M.M. Rao, ELAFINT: a mixed Eulerian–Lagrangian method for fluid flows with complex and moving

boundaries, Int. J. Numer. Methods Fluids 22 (8) (1996) 691–712.
[74] H.S. Udaykumar, R. Mittal, W. Shyy, Computation of solid–liquid phase fronts in the sharp interface limit on fixed grids, J. Comput.

Phys. 153 (2) (1999) 535–574.
[75] A. Varges, R. Mittal, Aerodynamic performance of biological airfoils, in: 2nd Flow Control Conference, Portland, Oregon, USA,

28th June–1st July, 2004, AIAA 2004-2319.
[76] C.-Y. Wang, On high-frequency oscillatory viscous flows, J. Fluid Mech. 32 (1968) 55–68.
[77] A. Wiegmann, K.P. Bube, The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise smooth

solutions, SIAM J. Numer. Anal. 37 (3) (2000) 827–862.
[78] C.H.K. Williamson, Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers, J.

Fluid Mech. 206 (1989) 579–627.
[79] C.H.K. Williamson, Three-dimensional wake transition, J. Fluid Mech. 328 (1996) 345–407.
[80] F.M. White, Viscous Fluid Flow, second ed. (Int. ed.)., McGraw-Hill, Singapore, 1991.
[81] S. Xu, Z.J. Wang, An immersed interface method for simulating the interaction of a fluid with moving boundaries, J. Comput. Phys.

216 (2) (2006) 454–493.
[82] J. Yang, E. Balares, An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving

boundaries, J. Comput. Phys. 215 (1) (2006) 12–40.
[83] G. Yang, D.M. Causon, D.M. Ingram, Cartesian cut-cell method for axisymmetric separating body flows, AIAA J. 37 (8) (1999) 905–

911.
[84] Y. Yang, H.S. Udaykumar, Sharp interface Cartesian grid method III: solidification of pure materials and binary solutions, J.

Comput. Phys. 210 (1) (2005) 54–74.

http://www-users.cs.umn.edu/saad/software/SPARSKIT/sparskit.html
http://www-users.cs.umn.edu/saad/software/SPARSKIT/sparskit.html
http://www-waterloo.ansys.com/European_Projects/alessia/papers/D5.17_6_Thesis_Tremblay.pdf
http://www-waterloo.ansys.com/European_Projects/alessia/papers/D5.17_6_Thesis_Tremblay.pdf


P.A. Berthelsen, O.M. Faltinsen / Journal of Computational Physics 227 (2008) 4354–4397 4397
[85] T. Ye, R. Mittal, H.S. Udaykumar, W. Shyy, An accurate Cartesian grid method for viscous incompressible flows with complex
immersed boundaries, J. Comput. Phys. 156 (2) (1999) 209–240.

[86] J.-F. Zou, A.-L. Ren, J. Deng, Study on flow past two spheres in tandem arrangement using a local mesh refinement virtual boundary
method, Int. J. Numer. Meth. Fluids 49 (5) (2005) 465–488.

[87] Y.C. Zhou, S. Zhao, M. Feig, G.W. Wei, High order matched interface and boundary method for elliptic equations with
discontinuous coefficients and singular sources, J. Comput. Phys. 213 (1) (2006) 1–30.


	A local directional ghost cell approach for incompressible viscous flow problems with irregular boundaries
	Introduction
	A one-dimensional ghost cell approach
	Governing equations
	Numerical method
	Time-stepping procedure
	Spatial discretization
	Relationship between the grid and the immersed boundary
	Discretization of the momentum equation
	Discretization of the pressure Poisson equation

	Local grid refinement procedure
	The coarse/fine grid interface

	A few comments on moving boundaries

	Numerical results
	Numerical accuracy
	Uniform flow past a circular cylinder
	Steady case
	Unsteady case

	Impulsively started flow past objects
	A circular cylinder in impulsively started flow
	A flat plate normal to an impulsively started flow

	Objects in harmonically oscillatory flow
	A circular cylinder in oscillatory flow
	A facing square section in oscillatory flow
	A chamfered plate in oscillatory flow


	Summary and conclusion
	Acknowledgments
	References


