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Abstract

An immersed boundary method for the incompressible Navier—Stokes equations in irregular domains is developed
using a local ghost cell approach. This method extends the solution smoothly across the boundary in the same direction
as the discretization it will be used for. The ghost cell value is determined locally for each irregular grid cell, making it
possible to treat both sharp corners and thin plates accurately. The time stepping is done explicitly using a second order
Runge-Kutta method. The spatial derivatives are approximated by finite difference methods on a staggered, Cartesian grid
with local grid refinements near the immersed boundary. The WENO scheme is used to treat the convective terms, while all
other terms are discretized with central schemes. It is demonstrated that the spatial accuracy of the present numerical
method is second order. Further, the method is tested and validated for a number of problems including uniform flow past
a circular cylinder, impulsively started flow past a circular cylinder and a flat plate, and planar oscillatory flow past a cir-
cular cylinder and objects with sharp corners, such as a facing square and a chamfered plate.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Flow problems involving complex geometries still poses a difficult challenge in computational fluid
dynamics. Traditional methods use body-fitted grids, structured or unstructured, that conforms to the solid
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boundary. However, the difficulty of generating high-quality grids increases with the complexity of the geom-
etry and much effort must be put into the pre-processing stage. An alternative approach is to use so-called
immersed boundary methods, sometimes referred to as Cartesian grid methods, where the boundary intersects
with an underlying Cartesian grid. No complexity is involved in generating the Cartesian grid and most stan-
dard numerical schemes can be used, although some modifications to the discretization are required in the
vicinity of the immersed boundary.

Several different immersed boundary methods can be found in the literature. They can be classified as either
diffuse (continuous) methods or sharp (discrete) methods [49,51]. The diffuse methods are considered to be
somewhat simpler to use than the sharp category, but it is not straightforward how the boundary conditions
should be imposed at the immersed boundary. The immersed boundary method as proposed by Peskin [55,56]
was originally developed to handle elastic boundaries for simulating blood flow in the heart, but has later been
used to simulate flow with rigid boundaries, e.g. [38,63]. The boundary conditions are enforced through a
smoothed forcing term added to the momentum equation. Other examples of diffuse methods can be found
in [22,61,86,53], among others.

One disadvantage with diffuse methods is that the effect of the boundary is distributed over a band of sev-
eral grid points which smear out discontinuities across the boundary. This smearing has an unfavorable effect
on the accuracy of the numerical scheme. More accurate schemes can be found among the category of sharp
methods. In these methods the numerical discretization near the immersed boundary is modified so that the
boundary conditions are imposed directly at the location of the boundary. The cut-cell method is such an
approach used within the finite volume framework [13,57,73,83,85]. Grid cells cut by the immersed boundary
are reshaped to conform to the boundary. This reshaping may in some cases result in very small grid cells with
an adversely impact on the numerical stability. To overcome this problem, cell-merging strategies have been
successfully proposed [57,85]. However, due to the many possible configurations of the irregular cut-cell, par-
ticularly in three dimensions, implementation becomes a tedious and non-trivial task.

Fadlun et al. [14] proposed to reconstruct the solution at grid nodes in the flow field nearest to the
immersed boundary using some form of interpolation, or external forcing, to enforce the sharp boundary
conditions. This approach does not affect the numerical stability since the numerical operators can remain
unchanged; however, the crucial issue is more related to how the solution is reconstructed near the bound-
ary [21]. Fadlun et al. [14] used a one-dimensional interpolation along the grid line intersecting the solid
boundary, but the choice of interpolation direction may seem to be arbitrary in the case of more geomet-
rically complex shaped boundaries. Later, Balaras [1] introduced a reconstruction scheme where the solu-
tion is reconstructed along a well-defined line normal to the body. Similar ideas can be found in [20,21,82].
These methods do not solve any equation at the first grid point external to the boundary [14]. It should be
stressed that Fadlun et al. [14] enforced the boundary condition on the tentative velocity field, which does
not satisfy the divergence constraint, before correcting the velocity due to the updated pressure field. They
argue that the correction obtained from the projection step introduced only small errors in the treatment of
the immersed boundaries.

For finite difference methods, the numerical operators near the immersed boundary can be explicitly mod-
ified to include points at the boundary instead of grid points inside the solid region [74,46,49,84]. Marella et al.
[49] obtained valid finite difference expressions for the first- and second-derivatives using Taylor series expan-
sions involving only grid points on one side of the boundary. This approach is somewhat analogous to the cut-
cell method for finite volume schemes, but only one single configuration of a numerical operator is needed
since modifications to the discretization stencil depends only on the distance to the boundary and not the
shape of the irregular cell. The numerical stability of the modified stencil may be altered if the boundary is
very close to a grid point. One way of avoiding this problem is to move the boundary slightly within a grid
cell [49], which locally decreases the order of accuracy.

An other sharp interface approach is the immersed interface method (IIM). The 1IM as proposed by Leve-
que and Li [41] was developed to solve elliptic problems with discontinuous and non-smooth solutions. Stan-
dard finite difference methods work poorly for these problems since the Taylor expansions are not valid for
non-smooth functions. In the IIM, correction terms are added to the numerical discretization to account
for any jump in the solution or its derivative. The original IIM has been modified for various sharp interface
problems (e.g. [4,32,42,43,47,77]), and it has also been extended to solve incompressible flow problems with
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solid boundaries [9,44,45,81,39]. It should be noted that every type of discretization stencils have their own
unique correction term.

The use of ghost cells introduce an alternative way of imposing the boundary conditions. Traditional ghost
cell methods assume that analytical continuation of the solution across the boundary is possible. Ghost cells
are fictitious cells inside the solid which are updated by extrapolating values from the flow field and the bound-
ary. The numerical operators do not need to be reformulated near the boundary, instead the boundary con-
ditions are implicitly incorporated through the ghost cells. There are numerous ways of extrapolating values
into the ghost cells. A local flow variable is commonly represented in terms of a polynomial which is used to
evaluate the ghost point. The accuracy of the ghost cell depends on the order of the interpolation scheme used
to obtain this polynomial [70]. Higher order polynomials are more accurate but also known to be more sen-
sitive to numerical instabilities.

Majumdar et al. [48] and Tseng and Ferziger [70,71] use two-dimensional linear and quadratic interpo-
lation involving fluid nodes in the vicinity of the boundary and boundary points to construct the local
polynomial. To remedy potential instabilities they introduce an image point / inside the fluid along the
normal to the boundary which goes through the ghost node G (see Fig. 1). The concept of using an image
point in the wall-normal direction has been widely used by others (e.g. [6,7,18,75]). Obtaining a wall-nor-
mal direction, however, is not always straightforward, instead Tremblay and Friedrich [68] use a weighted
combination of one-dimensional extrapolations to update their ghost cells. Their weighting coefficients
depend only on the distance to the wall, where the direction closest to the boundary is given the largest
weighting.

While a wall-normal or multi-directional approach of obtaining the ghost cell value may seem like a natural
choice for smooth boundaries it is not that obvious for more irregular shaped geometries. For instance, if the
geometry consist of a sharp corner, as in Fig. 2(a), extending the solution across the immersed boundary in the
y-direction (B — G) does not necessarily create a solution which is continuous across the boundary in the x-
direction (4 — G), and vice versa. Analytical continuation is not possible since the interior solution is not single
valued. For this reason, the direction of the extrapolation does also influence the accuracy of the method.
Another problem associated with ghost cell methods is encountered, as shown in Fig. 2(b), if a thin plate,
e.g. a trailing edge, separates two active grid nodes. For this problem, the ghost cells must lie inside the fluid
domain requiring separate memory locations [17]. The sharp interface methods of Udayakumar et al. [74] and
Marella et al. [49] are well suited for such irregular shapes, but unlike their approaches the ghost cell method
utilizes a simple extension to more advanced schemes since no changes need to be applied to the numerical
discretization. The external forcing approach of e.g. [14] can also handle such complex geometries, but discret-
ization stencils involving grid cells beyond the neighbouring node would then require a wide band of inactive
grid cells inside the fluid domain which are updated by interpolation.
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Fig. 1. Illustration of a ghost cell (G) using an image point (/).



P.A. Berthelsen, O.M. Faltinsen ! Journal of Computational Physics 227 (2008) 43544397 4357

a b
. . T . . . . .
. . iB . . . N . .
.____1_4_._..__.<:)G e} . . }\ . .
y ° ° O (@) [ o l \‘ .
| I

T

Fig. 2. Irregular shaped geometries: (a) a sharp corner and (b) a thin plate.

In this work, we present an immersed boundary method capable of solving the incompressible Navier—
Stokes equations in the presence of highly irregular boundaries. The main idea is to use a local directional
ghost cell which is obtained by one-dimensional extrapolation along the same direction as the discretization
it will be used for. As for the example in Fig. 2(a), the ghost cell needs to be determined twice, along the x- and
y-directions, respectively. Each irregular grid cell has its own set of local ghost cells because of the topological
differences. Similar concepts have been used when solving elliptic equations on irregular domains (e.g. [19,87]).
The present approach differs from other ghost cell methods mainly in the way the ghost cell values are extrap-
olated and updated. The ghost cells are updated such that the velocity field satisfies both the immersed bound-
ary condition and the incompressibility constraint at the end of each time step. We also present a method to
avoid numerical instabilities associated with grid nodes located close to the boundary without reducing the
formal accuracy. Also, a block structured grid refinement procedure is adopted to efficiently resolve large vari-
ations in the flow near the immersed boundary.

The rest of the paper is organized as follows: In Section 2 the basic idea behind the ghost cell method is
outlined using a one-dimensional approach. The governing equations are presented in Section 3. Then, in Sec-
tion 4, the numerical method for solving the incompressible Navier—Stokes equations is described in detail,
including the treatment of the immersed boundary and the local grid refinement strategy. Numerical results
are presented in Section 5 before we summarize with a conclusion in Section 6.

2. A one-dimensional ghost cell approach

Traditional finite difference methods cannot be applied to discontinuous and non-smooth functions since
the Taylor expansion is not valid for such problems. But, if the function is piecewise smooth it is possible
to devise a technique that conforms to any jump in the function and its higher derivatives. For simplicity, con-
sider a generic, one-dimensional function f'(x),x € [Xmin, Xmax),» Which is analytic everywhere except at the inte-
rior point x = X, (¥min < Xy < Xmax)>

. fi(-x) lf Xmin < X g KXoty
fx)=9"., .
ST(x) if x, <x < X
The computational domain [Xun, Xmax] can be discretized into N + 1 grid points with uniform grid spacing
Ax = (Xmax — Xmin)/N. The grid coordinates are defined as x; = xy, + iAx for 0 < i < N and f; denotes f'(x;).

Then, for any continuous and smooth region x; < x; < x,, we can write the numerical approximation to the
nth-derivative of f(x;) as

f;("’) = ‘C(’l)(ﬁ7ﬁ+17 ceea iy ,ﬁ-,],f;) =+ O(A)Cp), (1)

where L™ denotes the discrete finite difference operator and p is the order of accuracy of the numerical
approximation. The width of the discretization stencil, » — / + 1, depends on the given finite difference scheme.
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Next, let the interface be located at x, = x; + aAx where 0 < a < 1 and i < j < r such that the grid cells
x; and x;,; are separated by the interface. The finite difference approximation (1) can no longer be applied
since that involves grid cells on both sides of the interior point x,. However, since f'(x) is piecewise analytic
it can be smoothly extended beyond the interface by means of a fictitious domain (see Fig. 3). As a result,
the standard finite difference operator £” can be applied to approximate the nth-derivative of f (x:),

.f;'(n> = E(n)(,ﬁaﬁ+l7 s iy 7J(j7 j“ip e Lf;«g—lerg) + O(Axi’), (2)

where the function values f;,1,. .., f, are replaced by fictitious ghost cell values jil, . f8.
The ghost cell values can be determined by, for instance, fitting a gth order Lagrange polynomial, p,(x), to

the points x;_,,1,...,x; and x,, where

Py(x) = ( > ﬂs<x>fS> + B 3
for
Iox—x | x—x, L x— X
po=| I i = 11 2%
t#s
and
[ = lim f(x).

xX—x,

The polynomial p, (x) approximates f(x) to the left of x,, and it gives a smooth extension of f~(x) at
Xji1,---,X- with the truncation error O(Ax?*"). The error introduced by the ghost cells in the numerical
approximation of £" will then be of O(Ax?*'~") since the nth-derivative operator £” involves a division
by Ax". The order of accuracy of the finite difference discretization (2) is therefore p = min(p,q + 1 — n);
hence, the local accuracy of the numerical scheme is preserved if ¢ = p+n — 1.

The polynomial approximation (3) may present some difficulties if the interior point x, is very close to x;.
This is due to the singular behaviour of §; and f, as |x; — x,| — 0. To avoid this unfavorable behaviour we
introduce an image point defined as

x, = x; —max(0, e — a)Ax = x, — max(a, €)Ax,

where € is a predefined positive constant chosen such that if a > e then Eq. (3) exhibits no singular behaviour.
Further, we reconstruct f(x,) using a ¢th order Lagrange polynomial and the grid points x;_, .. .,x;, i.e.

L L L L

L L L B

Ti3 T2 T Zj Tiyt T2 T3 THa x

Fig. 3. Illustration of a smoothly extended discontinuous function f'(x). Actual function values (®); fictitious ghost cell values (O).
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J J
Xy — Xt
fr=p,x) = Z H : S
7 i, Xs — Xt
s=j—q | t=/—4q
t#s

The ghost cells can then be updated by the gth order polynomial fitted to the points x;_,41,...,x, and x,,

py(x) = ( ]Z_: ﬂS(X)f;) + B+ B 4)

s=j—q+1

where

Jj—1 j—1
x—x | (x—x)(x—x,) X—x \ x—x
s\WX) = , L(x) = -
Bil) t:_/]"—Iq-H Xe — x| (x5 — x0) (x5 — x;) Bu(x) . H Xy — Xt | Xy — X,
t#£s

Jj—1 _ _
Byx) = ( 1= _);) ; —

t=j—q+1 77

and

This way, none of the denominators in the f-coefficients become smaller than e as long as € < 0.5, and the
formal accuracy of the ghost cells are preserved. Effectively, this is the same as using a weighted combination
of the extrapolations involving the grid points x;_4.1,...,%;,%, and Xx;_4, ..., X;_1,X,.

3. Governing equations

Consider a two-dimensional Cartesian computational domain Q2 containing an immersed solid boundary in
the form of a simple closed curve, I', dividing Q into two separate sub-domains Q7 and Q. Here Q" denotes
the fluid region and ©~ denotes the solid body. The fluid is assumed to be an incompressible, Newtonian fluid
described by the non-dimensional Navier—Stokes equations without the effect of gravity

V-u=0, xeQ, ()
E3—“+u Vu= —Vp+—Vu x € QF (6)
ot TP T ke ’ ’

where u = (u, v) is the fluid velocity normalized with respect to a characteristic velocity scale U, x = (x,y) de-
notes the Cartesian coordinates normalized by a characteristic length scale D, ¢ is the time normalized by
D/U, and p is the pressure normalized by pU? where p is the mass density of the fluid. The Reynolds number
is defined as Re = UD/v where v is the kinematic viscosity.
Further, boundary conditions for the velocity and the pressure field must be prescribed at the immersed

boundary. Requiring no slip at the solid boundary for a fixed, non-moving body yields

u=u=0, xeI. (7)
For the pressure field, boundary conditions can be obtained from the momentum Eq. (6) in each axis direction
as

p_ 1, op_ 1

—=—V d —=—V, er, 8

axReuan ayReUX ®)
since the left hand side of Eq. (7) vanishes at the boundary. Projecting these conditions onto the unit normal n
to the solid boundary I' gives the following Neumann boundary condition:

op 1,
. = — = . —_ F.
n-Vp n n Rev u, Xc

Boundary conditions at the exterior boundary 02 and initial conditions must also be applied in order to close
the system.
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4. Numerical method

In this section, the numerical method for solving incompressible flow in complex geometries is presented.
This scheme is based on the well-known projection method [10] where an intermediate velocity field is first
obtained from an approximation of the momentum Eq. (6), then an elliptic equation is solved for the pressure
which enforces the divergence constraint (5).

In this work the time stepping is done explicitly using a second order predictor—corrector method. The spa-
tial derivatives are approximated by finite difference discretization on a staggered grid. A fifth order WENO
scheme [30,31]1s used to treat the convective terms in Eq. (6) while central schemes are used for all other terms.
A local grid refinement technique is used to efficiently resolve the boundary layer flow near the immersed
boundary. The details of the numerical scheme are outlined below.

4.1. Time-stepping procedure

The following predictor—corrector procedure is a Runge—Kutta method based on the trapezoidal rule, also
known as Heun’s method. The two steps of the projection method are done twice at each time step to ensure
that only a divergence-free velocity field is used in the different terms of Eq. (6). At the predictor stage, an
Euler step is taken to advance the solution with the time step A¢. Let

F(u) = —u-Vu+ é Viu, 9)
then, using a time-discrete form,

u =u" + ArF(u")
and

i =u" — ArVp,

where p is obtained from solving

1
2— *
=—V-u. 10
Vp Atv u (10)
The predicted velocities, "', are then used in the corrector step to obtain the solution at time #"*/,
At
u :unJr?(f(un)Jr}-(ﬁnH)) (11)
and
ut = ut — ArVp, (12)
where p is calculated from
1
vzp:Ev-u**. (13)

Appropriate numerical boundary conditions for the Poisson equation (13) can be obtained by rearranging Eq.
(12),
_ (up =t

By setting uj* = w!"! the boundary conditions (8) are implicitly satisfied, leading to a simpler homogeneous
boundary condition for the pressure when solving Eq. (13),

Vp=0 atxel.

Similar arguments can be used to obtain the numerical boundary condition at the exterior boundary if the
velocity is prescribed at time #*' (e.g. walls and inlets). If the exterior boundary is an outlet it is common
to apply a Dirichlet boundary condition for the pressure,
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i) = Poutlet atx e a‘Qoutlet~

The boundary conditions for p when solving Eq. (10) are the same as given for p above where u™* is replaced by
ur.
It follows from Eqgs. (11) and (12) that if we define

pn+1/2 _ ﬁ
then not only the velocity field is second order accurate in time but also the pressure. Thus, the pressure field is
lagged in time. Second order temporal accuracy for the pressure at #'*! is obtained by extrapolation, i.e.

n+l _ n+1/2+ga_p”+l/2 ~ n+1/2_’_g pn+1/2_pn71/2
p p 2 Ot p 2 tn+1/2 _ tn71/2 !

4.2. Spatial discretization

The governing equations are discretized using a staggered grid: the velocity components are defined at the
appropriate cell faces, u;;1/2,; and v;;,1/2, and the pressure is defined at the cell centres, p, ;. Here, the subscript
i, j indicates the grid cell (i, /) in index space or x;; = (x;,y;) in physical space, the subscript i + 1/2, j indicates
the cell face separating cell (i, /) and (i + 1, /) at X;41/2;, and i,j+ 1/2 indicates the cell face separating cell
(i,7) and (i,j+ 1) at X;;41/2. The uniform grid cell spacing for each grid level are denoted Ax and Ay in x-
and y-direction, respectively. Where it is appropriate, we have dropped the superscript # for the ease of nota-
tion in the remaining sections.

4.2.1. Relationship between the grid and the immersed boundary

Before we proceed with the details of the spatial discretizations a relationship between the grid and the
immersed boundary needs to be established. In order to have a practical representation of the immersed
boundary, the body surface is discretized into a number of piecewise linear elements. There are no restrictions
on the size of these elements so that any curved surface can be represented to desired accuracy by simply using
a sufficiently large number of elements. A simpler representation of the immersed boundary is possible using
the zero level set of a distance function; however, the level set formulation fails to describe sharp corners and
infinitely thin plates.

Grid cells where the cell centre is inside the solid are defined as inactive, while the cells where the cell centre
is outside the solid are defined as active. An active grid cell is said to be irregular if at least one neighbouring
grid cell is separated by an immersed boundary; otherwise, it is defined as regular. A velocity point is active if
and only if grid cells on both sides of that cell face are active and there are no immersed boundary separating
the two cell centre points (see Fig. 4).

Regular cell

Irregular cell

Solid cell

Fig. 4. Definition of active and inactive grid points. Active pressure point (®); inactive pressure point (O); active velocity point (H);
inactive velocity point (OJ).
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Some inactive velocity points may still lie in the fluid. These velocity points are referred to as boundary
points. It should be noted that these boundary points are marked as inactive only because no pressure gradi-
ents can be obtained at these points due to the lack of active pressure cells on both sides of the point. In order
to have a well-defined problem, the velocity components defined as boundary points are updated by interpo-
lation using the no-slip condition at the immersed boundary and active velocity points within the fluid. This
procedure may seem similar to e.g. [14], but we would like to emphasize that there are still active velocity
points adjacent to the boundary. Here, we have used a one-dimensional, third order interpolation scheme.
For instance, as shown in Fig. 5(a), let x;,1/>; be the location of the boundary point and u;,/,; be the inter-
polated velocity, then the one-dimensional interpolation in x-direction is given as (skipping the j-index)

i i i
. Xiv1/2 = Xe—172 | Xig12 — Xr Xit1/2 — Xi—1)2
Uirl)2 = Us—1/2 + - |ur,

oo | S5 Xs—1/2 = Xe—1/2 | Xs—1/2 — Xr ity Xr —Xi—1)2
t#£s

where u; is the wall boundary condition located at x;, and w;_y/,,u;—3» and u;_s/, are values taken from the
neighbouring points x;_/2,x;_3/> and x,_s/», respectively.

If a boundary point can be interpolated from more than one direction, each direction is weighted by a mul-
tiplication factor [67,68], i.e.

Uir1/2) = Velliyy oy + 7’y”f+1/2,j’ (15)
where the weighting coefficients are given as
1 1
=3 and 7y,

N2 = DA 2

() 1+ @)

and the distance between the immersed surface and the boundary point in x and y-directions are aAx and bAy,
respectively (see Fig. 5(b)). This way the nearest surface element will give the largest influence on the velocity
component.

4.2.2. Discretization of the momentum equation
For now, let us assume that all velocity nodes involved in the discretizations below are active and located
far away from any boundary surface so that the finite difference stencils are all well-defined and valid.

a b \
Yi+3 L
|
|
Y2 *
/ .
|
- Y n 4
i |
: 1
/wF ) I
Tisp Tz Tiap Tiap Yi - ?/Tbﬁy
2
it alAx
|
/]

TisrR TigR Tiap L1 TR

Fig. 5. Reconstruction of boundary points: (a) One-dimensional interpolation in x-direction. (b) Multi-directional interpolation. Inactive
boundary point (O); active velocity points (H); wall points on immersed boundary (@).
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We define a set of cell centre velocities with simple averaging:
- Ui 1)+ Uir1)2, Vij-1/2 + Vij1/2

Y 2 2 '
In order to update u and v on the appropriate cell faces, we also need to define u at the cell face
(i,j+ 1/2) and v at (i + 1/2,). Simple averaging gives

and Vij = (16)

Uij + Ui Ui+ Vit1,
Ujjr1/2 = % and Vit1/2) = % (17)

Let us now consider the x-component of the momentum equation. The second-derivatives in the viscous term
are dicretized using standard second order accurate central differencing at the cell faces. We get

2
(V ”)i+1/2‘/ = (uXX)Hl/Z‘/' + (”yy)iﬂ/z,j;

where
C Uiapy — 20+ Uiy
(uxx)iJrl/Z‘j = Ax2
and
U121 — 205+ Uiy
()41 /20 = Ay .

The convective terms, uu, and vu,, are discretized using a fifth order upwind WENO scheme [30,31]. For the

first-derivative in the x-direction, (i), 11/2,» the upwind procedure gives us

M; if ui+1/2,j > O,
(MX)i+l/2,j =qu if g, <0,

0  otherwise,

where the WENO approximation is a convex combination of the three possible ENO3 approximations,

S pe £ 24k + 3+
u; =oru. +oyus +ojuT.

The three ENO3 stencils are defined as

uli:ﬁ_E lgy
* 3 6 6 ’

uzi:_§+ﬁ+ﬁ
¥ 6 6 37

g 545
© 376 6

where
_ Wizpy—Uisp, _ Uipy T Uiz _ Uiy — Uim1)2 — Uiy T Uirl)2
@ = Ax ’ 2 Ax ’ 3 Ax v 4 T Ax ’
_ Uips)ny — Uig3)n
="
and
+  Uiv7py — Uirs +  Uiyspy — U3y +  Uipzppy T Uikl +  Uiy1p; — Uiy
4@ = Ax T Ax » BT Ax 4T Ax ’
v Wi T Uin3)y
9 = Ax '

The weights ;" are chosen such that the smoothest ENO3 stencil is given the most significant contribution to
the approximation; thus, any sharp discontinuity in the solution is given minimal weight reducing the numer-
ical errors and potential instabilities. Omitting the superscript 4, the weights are written as
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23] %) o3
o =———, wmy=——"—— and om;=——""-—"—,
o + oy + o3 o+ o + o3 o+ oy + o3
where
0.1 0.6 0.3
=7, =T33 and o3 =—3,
(S +¢€) (S2+€) (S3+¢€)

with the regularization parameter ¢ = 10® and the smoothness indicators S, given by

13 1

S ZE(% —2q, +q3)2 +Z(‘]1 —4q, +3Q3)27
13 1

Sy = E(‘h —2q; Jr‘]4)2 +Z(‘I2 - LI4)2»

13 1
83 = ﬁ(% —2q, + ‘15)2 +Z(3‘13 —4q, + ‘15)2-

In smooth regions, where all S; are approximately the same size, all three approximations are given the weight-
ing such that optimal fifth order accuracy is obtained. In non-smooth regions the accuracy of the WENO
scheme reduces to third order only; same as the ENO3 scheme.

The first-derivative in the y-direction, (u,) is obtained in a similar fashion where v;;1/,, is used to
determine the upwind direction.

To summarize, using the subset

i+1/2,j°

D, = {ui—S/Z,ﬁ Ui—3)2.j5 Ui—1)2,j5 Uit1)2,j5 Uit3/2,j, Uit5/2,5 ui+7/2,j}

we can obtain numerical approximations to (i), and (ux),,/,; following the procedure described above.
Similarly, using the subset

Dy = {ui+1/2‘j—37 Uit1/2,j-25 Wi 1)2,j—15 Uit1/2,j5 Uit 1)2,j4+15 Uit1/2,j425 ui+1/2,j+3}7

we can approximate (uy);,/,; and (uy),,/,; following the same procedure. These approximations are found
straightforwardly since none of the velocity points in the subsets are separated by a surface element.

On the other hand, if the point of interest is located close to an immersed boundary such that at least one of
the velocity points in the subsets above is separated from the rest by a surface element (see Fig. 6) some mod-
ifications are required in order to satisfy the boundary conditions correctly. Since all terms in the numerical dis-
cretization can be treated dimension by dimension it is simple to adopt the one-dimensional ghost cell approach
described in Section 2. That means that any point separated by an immersed boundary can be replaced by a tem-
porary, fictitious value which smoothly extends the solution across the boundary. For instance, as shown in
Fig. 6, the velocities u;,3/3;, t;+5/2; and u; 7/, cannot be used to evaluate (u.),,, 5, and ()i 1, since the
numerical discretizations are not valid across the boundary. However, if these velocities are replaced by a set
of fictitious values, 20 uf s 1, and uf , 20 obtained by extrapolating the solution along the x-direction, then
()12, and (), /> ; can be computed following the same procedure as above using the subset

DY = {525 Ui3/2s Uim1 25 Uic1 2 W3 2 o U5 o o Mg )
instead of D,. In a similar way, the derivatives (,),,,,,; and (u#,),,,/,; can be approximated using the subset
Df = {Ui12-3, Uie1 /2,2, Ui 1/2,j-15 Uit 1/2,5 ”§+1/2,j+1 ) ”§+1/2<;‘+27 ”§+1/2.j+3}v
where the ghost cell values uf,, , .\, u},, 5, and uf,, , ;, are obtained by extrapolation along the y-direction.
Now, the x-component of Eq. (9) in the time-stepping procedure can be written as

1
Fr(Wi1yy) = _(”i+1/2,j(uX)i+1/2J + Ui+l/2<,j(”y)i+1/2,j) + Re ((“xX)i+1/2,j + (“y,V)f+1/2,j)~

Likewise, we can obtain numerical approximations to (vx), ;. 1/2, (0y), j11/2: (0xx); 412 @nd (0), ;41> in similar
manners as described above. Then the y-component of Eq. (9) becomes

1
Fy(uijn) = _(“ivj+1/2(vx)i,j+1/2 + Uix/+1/2<v)’)i,j+l/2) + Re ((Uxx>i4j+l/2 + (vy,v)i,j+1/2)-
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Fig. 6. The stencil for calculating (u4.),, ;> (4e) ;41720 (#);41/2, a0d (1), 5 ;- Invalid velocity points are replaced by fictitious ghost cell
values ([J) obtained by extrapolating active velocity points (H) across the immersed boundary.

As discussed in Section 2, the accuracy of the discretizations near the immersed boundary depends on the
accuracy of the ghost cells. To preserve at least second order accuracy in the viscous terms it is necessary
to use a cubic extrapolation scheme to obtain the ghost cell values; in this work a third order Lagrange poly-
nomial is used. A cubic extrapolation scheme reduces the WENO scheme into a third order accurate ENO3
scheme near the immersed boundary since the three possible ENO3 schemes will in this case lie on the same
curve. Further, if not enough active velocity points are available for a cubic extrapolation the order of the
extrapolation scheme is reduced to conform to the nodes available. This will reduce the accuracy locally; how-
ever, the impact on the global accuracy is assumed to be negligible small since this situation is expected to
occur at only a few places.

Velocity points located very close to the immersed boundary may be subject to numerical instabilities due to
the singular behaviour of the extrapolation scheme. Considering the x-component of the momentum equation,
the distance to the boundary in the x-direction for active velocity points must be at least half a grid cell spacing
which limits the problem to the discretization in y-direction only. Therefore, if the distance to the immersed
boundary along the y-direction is too small compared to the grid cell spacing, then the extrapolation scheme is
modified as described in Section 2 in order to avoid any singular behaviour. Similarly, this is only a problem
for the discretization in x-direction when solving the y-component of the momentum equation.

Furthermore, the cell centred velocity components cannot be calculated using simple averaging as in Eq.
(16) if one of the velocity points involved is located on the other side of a boundary. In this case, a one-dimen-
sional second order Lagrange polynomial, involving the boundary and two velocity points inside the flow, is
used to reconstruct the cell centred velocity component. The cell face velocity components given by Eq. (17)
are only evaluated in active velocity points; thus, the presence of an immersed boundary does not change the
way they are calculated.

4.2.3. Discretization of the pressure Poisson equation

In order to advance the solution to a divergence-free velocity field at time #"*' we need to solve a Poisson
equation for the pressure. For a staggered grid arrangement we use an exact projection method: the discrete
divergence constraint is exactly enforced. The projection step is performed twice, one for each step of the time-
integration procedure. For brevity, since both projection steps are identical, we will only focus on the pressure
Poisson Eq. (13) in the corrector step.



4366 P.A. Berthelsen, O.M. Faltinsen ! Journal of Computational Physics 227 (2008) 43544397

We try to find a pressure, p, ;, such that the following constraint is satisfied

n+l __
Veoul =0, (18)
at every active grid cell where the divergence operator is defined by the central scheme
Wl gt L gt
V. u'.'{rl _ i+1/2,j i—1/2,j + ij+1/2 ij—1/2 ) 19
A Ay (19)

For regular grid cells, where all the surrounding velocity points are active, using Eq. (12) we can write

+1 _ pl+lJ pl]
Uiy = Uity — AL <—Ax )v

1 - pi," _pi—l,.'
Uy = Uy At(—/ Ax /)7
1 Pij+1 — Piy
Ve = U — A <—] Ay ),

. Pij — Pij-1
=, — At <—”] = ),
J=1/2 J=1/2 Ay

where Vp is approximated by central differences. Inserted into Eq. (18) recovers the standard discrete Poisson
equation (13) for pressure at regular cells,

Div1,; =20+ Diy +pi7j+l —2p;+ Py 1 (u;ﬁl/lj — Uy, n Vi~ ”?;1/2)
Ax Ay '

A2 Ay A

If the grid cell is irregular special care must be taken in order to satisfy the divergence-free velocity constraint.

Again, we want to satisfy Eq. (18) using the central scheme (19) where inactive velocity points are replaced by

fictitious values obtained by interpolation (note that an inactive velocity point is either obtained by interpo-

lation or extrapolation, depending on the location of the boundary, but for simplicity we shall now refer to

both procedures as interpolation). For instance, assume that x;.,,; is an inactive velocity point and T is

an interpolation scheme which recovers the fictitious value satisfying the no-slip boundary condition, i.e.
ur_H—l‘g — I(u”“).

i+1/2,)

We can split the interpolation Z into two parts, Z, and Z,,
op op
n+1, n Kk
ul:]/é'_j =T = I(u - Ata) =T7,(u™) — AiZ, (ax)

or

op

ntlg e

Uiv1pj = Yivtpny — At(@x +1/2
i J

where “::]g/z,j can be interpreted as a fictitious, tentative velocity and (0p/0x)?,, 12, as a fictitious pressure gra-
dient. The no-slip condition in the interpolation Z is satisfied by setting the boundary conditions
up = u’}“ and (Op/dx),, = 01in 7, and Z,, respectively (cf. Eq. (14)). The pressure gradient at an active veloc-
ity point is approximated by a central difference stencil using the pressures on both sides of the cell face; there-
fore, we can replace Z, with an interpolation scheme 7, such that

0 .
7, <a];) = T(p).
Further, we define a fictitious pressure pf,, ; such that

ap & ngrlx/ pl] ap ¢
<a>f+1/2,_/ Ax o pil’j_pi'j—i_Ax ox ),

i+1/2,j
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Then the Poisson equation (13) for pressure at the irregular cell can be written as

v —
ij+1/2 ij—1/2
+ ;

Ax? Ay? A

pirl,j = 2p;+ iy +Pf./+1 —2p; ;D _ i “jjlg/z,j — Uy,
t Ax Ay

where the constraint

pirl,j —Pij— ijZ(P) =0

closes the system. This way, the discrete divergence constraint (18) will be exactly enforced at the irregular cell
since Z(u"*") = T, (u™) — AtZ,(0p/0x).

The choice of interpolation stencil Z depends on the location of the immersed boundary. If the inactive
velocity point lies inside the fluid on the same side of the boundary as the cell centre, then it is treated as a
boundary point where a weighted combination of one-dimensional Lagrange interpolation is used (see Eq.
(15)). If the boundary separates the inactive velocity point from the cell centre, then the fictitious value is
obtained by extending the solution across the boundary as described in Section 2, i.e. one-dimensional extrap-
olation in the direction of discretization. For example, using a quadratic Lagrange polynomial to reconstruct
the solution along the x-direction in the example above gives

ok 2 n+1 2(0 - 1) sk a— 1 sk
Ti(u™) = m”r+ + T g Mg T e
and
» B 2 dp 2(a—1) Pij — Pi-1; a—1/pi1;—Piay
Iz(p)_a(a+l)6xr a ( Ax ) a—|—l< Ax )7

where aAx is the distance between X,_; »; and the immersed boundary. Subtracting AT, (p) from | (u**) recov-
ers the quadratic interpolation

2({17 1) n+l1 a—1 n+1

I(uﬂ+l) — m ’11"+1 + Tui—l/lj — mui—3/2,j’

since (0p/0x); = 0.

It is sufficient to use a quadratic Lagrange polynomial in order to preserve the second order accuracy of the
discrete divergence operator; however, to ensure that the boundary points defined by Eq. (15) satisfy the dis-
crete divergence constraint a cubic polynomial should be used for these points. This ensures that the updated
velocity field actually satisfies both the no-slip boundary condition and the divergence constraint (18) at the
end of the time step, as opposed to e.g. [1,14].

In general, this approach is adopted to all irregular grid cells where inactive velocity points are replaced by
similar interpolation schemes. A set of additional constraints to p is coupled to the discrete Poisson equation
in order to solve for the fictitious pressure cells created for irregular cells. The resulting system of linear equa-
tions can be solved using most types of iterative methods. We have successfully solved the linear system using
the BICGSTAB method with ILU(k) and ILUT preconditioning as provided in the SPARSKIT package
[59,601].

4.3. Local grid refinement procedure

The local grid refinement approach adds new refinement grids to regions where the variations in the flow
are expected to be high, e.g. in the boundary layer near solid surfaces. This local grid refinement is necessary in
order to achieve required resolution and still maintain acceptable computational efficiency. The grid cells that
are tagged for refinement are grouped together using the point clustering algorithm of [3] to form efficient
block structured patches, or subgrids, which cover the tagged regions. These subgrids are refined and then
tagged for further point clustering and refinement until adequate local resolution is obtained.

In a block structured approach, rectangular sub-domains are refined instead of individual grid cells such
that regions where higher resolution is needed can be covered with a relatively small number of refined
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subgrids (see Fig. 7). Although this approach results in some unnecessary refinement, the advantages are better
efficiency of data access and less overhead costs due to irregular operations such as interlevel communications
[50].

The refined subgrids are aligned with the underlying coarser grid. They form an hierarchical structure
where the coarsest grid belongs to level / = 0 and the next finer grids belong to the next level / = 1, and so
on. The refinement ratio between the two grid levels /and / — 1 is 2. The subgrids are properly nested, meaning
that any refined grid communicate only with grids on same level / or with grids on only one refinement level
higher (I + 1) or lower (/ — 1). Any communication between two refinement levels / and / + k& where £ > 2
goes through the intermediate levels. This simplifies the passing of information between the refinement levels.

The solutions at all refinement levels are fully coupled throughout the time-stepping procedure and all levels
are given the same time step A¢z. The finer grid solution is transferred from level / + 1 to the coarser level / in
the overlap region by using simple averaging, starting from the finest level all the way down to the base grid at
[ = 0. Refined subgrids not extended to a physical boundary or another subgrid on same refinement level use
information from coarser grids to provide boundary values. These boundary cells are updated by higher order
interpolation on a coarser level.

4.3.1. The coarselfine grid interface

Special attention must be given to the coarse/fine grid interface between two refinement levels when solving
the pressure Poisson equation. Due to the staggered arrangement of the variables and the alignment of the
refined grids, both the coarse level velocity and the fine level velocity are located at the grid interface. How-
ever, to ensure continuity across the grid interface, the velocity is calculated from the governing equations only
on the fine level while the coarse level velocity is determined by linear interpolation of the fine grid velocity.
Consequently, the coarse level pressure gradient at the grid interface also needs to be obtained from the fine
level in a similar fashion in order to maintain a consistent pressure and velocity field.

We let the pressure on the coarse level act like a Dirichlet condition for the pressure on the fine grid level,
while information is passed from the fine level to the coarse level through a non-homogeneous Neumann con-
dition. This ensures that the pressure is continuous and smooth across the grid interface and is what [50]
referred to as the elliptic matching condition.

Fig. 7. Block structured grid refinement near the immersed boundary.
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Following the approach of [50], we write the Laplace operator £(p) = Vp in the pressure Poisson equation
as a flux difference operator

fix+]/2J - f;'x—l/Zj _i_ﬁjﬂ/z - ﬁ}l/z
Ax Ay ’

where the edge-based fluxes are given as f = Vp. Let 0Q%/" denote the boundary between the coarse and the
fine computational domain.
For the region away from 0Q%, in both domains, the Laplace operator is the standard five point stencil
where the edge-based fluxes are given as
x _ Py — Piy : _Pijr1 Py
it1/2) = Ax and i},;‘+1/2 = Ay

£(p), =V 1=

in both directions. If the coarse cell is bordering the grid interface then the flux passing through Q" is re-
placed by an average flux calculated on the fine grid level. For example, let coarse grid variables be denoted
by capital letters and fine grid variables by small letters (see Fig. 8(a)) then summing the fluxes passing in and
out of the coarse cell (/,J) located above the grid interface gives

Fiopns = Filapns Fip—Flihy

E(P)u = AX + AY )

x . Pry—Pry x . Pry—Pr1y " _ Prj—Pry
I+1/2J — AX ) 1-1/20 = AX ) 1J+1/2 = AY )
and

ave 1/, x 1 (Pij = DPij-1 | Piviy = Piy1j-1
F;.'Jfl/z =3 (fi,'fl/z +. i+l,j—l/2) = E( s Ay I+ / Ay .

The boundary cell values p, ; and p,,, ; are obtained by first a quadratic interpolation parallel to the boundary
to get the intermediate points on both sides of the coarse grid node location as shown in Fig. 8(b). Then qua-
dratic interpolations are used normal to the grid interface to get the boundary cell values for the fine grid. For
the fine cells (i,j — 1) and (i + 1,7 — 1) adjacent to the grid interface, the Laplace operator £ becomes the

Fiyp, Fiapg (LJ)
—+ O —* O=mm——— == F==O== === ==== O

(L.7) : :

y Y | ] | ]
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Fig. 8. (a) Coarse cell fluxes at the coarse/fine grid interface. (b) The interpolation stencil at the coarse/fine grid interface. Coarse cells (O);
intermediate values on coarse grid (0); fine cells (@); boundary cells (M) for computing of coarse/fine fluxes.
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standard five point stencil using the boundary cell values p, ; and p,,, ; since this is equivalent to enforcing the
elliptic matching condition at 0Q°/".

4.4. A few comments on moving boundaries

Although the focus of this work is on fixed boundaries only, there is nothing wrong in extending the present
method to moving boundaries in the same fashion as many other immersed boundary methods. However, a
few comments are found to be in place.

As the boundaries move across the grid, computational cells inside the solid (or located on one side of a thin
body) at one time step may emerge into the fluid (or appear on the other side of the body) at the next one.
These computational cells contain no correct time history of the velocity field and special treatment is neces-
sary in order to evolve the solution to the next time level. One way is to treat all new velocity points in the
same way as boundary points are treated, i.e. interpolating between active velocity points and the immersed
boundary. This will require interpolation of the pressure gradient as well when solving the pressure equation.
Alternatively, the tentative velocity at these new points can be obtained by extrapolating values from the flow
field without involving the immersed boundary. In that case, the pressure equation can be solved without any
special care regarding the newly emerged grid cells.

Another important challenge is related to the change of the discrete operators as the boundary moves. For
instance, the right hand side of the pressure equation (13) will not necessarily change smoothly in time. This
may result in large fluctuations in the pressure field from one time step to an other. For a moving circular
cylinder with a relatively small time step a rather smooth change in the time evolution of V -u™ can be
expected; however, that is not the case for sharp corners where the discrete operators may change abruptly
from one time step to the next.

5. Numerical results
5.1. Numerical accuracy

The spatial accuracy of the present method is demonstrated by a grid refinement study for a lid-driven cav-
ity containing a circular cylinder. The cavity, shown in Fig. 9(a), is a square box of height H where the cylinder

is located at the centre of the cavity with diameter D = H /2. The horizontal velocity at the top lid is given a
parabolic profile such that the velocity is maximum at the centre and zero at the corners. The Reynolds
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Fig. 9. Numerical accuracy: (a) the lid-driven cavity containing a cylinder. The dashed line box shows the bounded area for error
calculations. (b) The convergence behaviour of the error norms for the velocity components # and v and pressure p. Solid symbols
represent the L., norm and open symbols represent the L, norms. The reference lines Ci4 ~ O(h) and Cyh* ~ O(h?) correspond to error
norms with first and second order convergence rate, respectively.
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number, based on the mean lid velocity and cavity height, is set equal to Re = 100. This example is similar to
the test case used by [35], except a higher Reynolds number is used in this study.

Five different, uniformly spaced, grids are used for the error analysis. The number of grid points on each
grid are 257, 507, 100, 200% and 400°, respectively, where the finest grid solution is considered to be the
benchmark solution. The same time step (AtU/H = 0.001) is used for all grids in order to minimize the effect
of temporal errors on the grid refinement analysis. The motion of the top lid is initiated impulsively and the
simulations are carried out for 10000 time steps. At the end of the simulations, the errors of the four coarser
grids are quantified as the L., and L, norms given by

1/2

N
. 1 & 2
|En|l. = max [¢) — ¢;| and [|Enll,= | > |o¥ — o] |
i=1,n, I’lp ]

P

respectively. Here, ¢,N denotes a generic flow variable (e.g. velocity components u and v and pressure p) cal-
culated on a N x N grid, ng denotes the number of active points, and ¢7 is the ‘exact’ solution obtained by
interpolating the benchmark solution onto the test grid. The errors are calculated only inside the square
box of size 2H /3 surrounding the cylinder. This is to ensure that the error norms represent the actual error
near the immersed boundary [35].

The results of the grid refinement analysis are summarized in Fig. 9(b). The error norms ||Ey||,, and ||Ex|,
for velocity components u and v and pressure p are plotted against the number of grid cells in each coordinate
direction, N, in a log-log scale. Also plotted are the reference lines Cih and C,h* corresponding to first and
second order rate of convergence, respectively, where # = 1/N. The two constants C; and C, can be chosen
arbitrarily, but for the best illustration of the convergence rate in Fig. 9(b) they are set equal to 0.28 and
3.45, respectively. It can be concluded that the rate of convergence is close to second order, since the slope
of the error norms are close to the slope of C,/”.

This conclusion can be further supported by the formula

, _ log(llExpll/lIENI])
log(2) ’

which approximates the order of accuracy y such that ||Ey|| ~ O(h”), where || - || denotes an error norm. If
y = 2 then the rate of convergence is second order. Tables 1 and 2 show the rate of convergence for the
L., and L, norms, respectively. Apparently, both error norms exhibit approximately second order conver-
gence, which reinforce our conclusion above.

Table 1
Rate of convergence calculated for the L., norm
N u v P
IE]l 14 IE]l 14 IE]l Y
25 1.067 x 1072 7.507 x 1073 1.473 x 1072
50 2.370 x 1073 2.17 2467 x 1073 1.61 3.148 x 1073 2.23
100 5.884 x 1074 2.01 6.197 x 1074 1.99 7.994 x 1074 1.98
200 1.107 x 107* 2.41 1.200 x 107# 2.37 1.544 x 107* 2.37
Table 2
Rate of convergence calculated for the L, norm
N u v 4
IEll, Y £l Y £l Y
25 3.462 x 1073 2.294 x 1073 3.071 x 1073
50 8.136 x 1074 2.09 6.461 x 1074 1.83 8.023 x 1074 1.94
100 1.981 x 107 2.04 1.529 x 107* 2.08 2.116 x 107* 1.92

200 3.514 x 107 2.50 2.799 x 107 2.45 4.331 x 107° 2.29
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5.2. Uniform flow past a circular cylinder

In this section, the present method is used to compute uniform flow past a cylinder of circular cross section.
Circular cylinders exposed to uniform flow has been widely investigated in the past and a large set of data is
available for comparison. We examine the performance of the present approach for Reynolds numbers, based
on the diameter D and the uniform far-field velocity U, in the range 40-200. This includes flow in the steady,
transitional and unsteady regime where the wake can be assumed to be laminar [64].

To ensure converged results it is necessary to perform a grid dependence study. Here we consider the sen-
sitivity of the calculated drag and lift force due to variations in the grid resolution and domain size. Three
different grids are used in the grid refinement study where the number of local grid refinement levels, .y,
is equal to six. A systematic refinement procedure is used. That means the areas covered by patches of locally
refined subgrids are fixed before all grid levels are refined subsequently by a factor of two. The base grid cell
spacing on the coarsest grid is Ax = Ay = 2D. Also, the computational domain must be chosen sufficiently
large such that the far field boundaries impose no noticeable effect on the flow. This effect is studied by chang-
ing the length and the width of the computational domain while holding the grid resolution near the cylinder
fixed.

The computational domain can be described as follows: The cylinder is located at (x,y) = (0,0), a uniform
inflow condition in the x-direction is prescribed at x = —10D, the top and bottom boundaries (y = +y,,,,) are
treated as free-slip walls, and homogeneous Neumann conditions (0u/0x = 0 and 0v/0x = 0) are applied to
the velocity field at the outflow boundary downstream of the cylinder at x = x,,x Where the outlet pressure
is fixed as p,, = 0. The initial condition is the undisturbed uniform flow followed by an initial projection
step in order to make the velocity satisfy the divergence constraint. In the case of unsteady flow the transition
from a steady to an unsteady condition can be automatically initiated by computer round-off errors; however,
to accelerate the transition to unsteady flow a small perturbation is imposed at the inflow boundary for a rel-
atively short period of time.

Once the computed flow field has converged to a steady or periodic solution, it is possible to extract the time
dependent drag and lift coefficients, defined as

Fp(t) Fi(2)
W= 7 p L,U2D’
2p 00 2p o9

and CL(t) =

respectively, where F'p(¢) is the drag force and F (¢) is the lift force. Further, the Strouhal number is defined as
St = fD/ U, where fis the vortex shedding frequency in the unsteady flow regime. The force F = (Fp, F1) is
here calculated by direct integration of the pressure and the shear stresses along the immersed boundary, i.e.

F= / (—mp+n-1)drl, (20)

where 7 is the viscous stress tensor and n is the normal vector pointing into the fluid. An alternative way to
calculate the force is to use the equations for conservation of linear momentum [15,80]. Let S, by a fixed
closed surface enclosing a control volume V" and the immersed boundary. Then integrating the conservative
form of the Navier-Stokes equation over the volume V and applying Gauss theorem we can show that

F:%/VpudVJr/ (pn - (uu) +np —n- 7)ds. (21)

Soo

This expression is also referred to as the control-volume formulation [80].

Table 3 summarize the grid dependence study for Re = 200. The first three rows show the effect of varying
the grid resolution on the Strouhal number, the time-averaged drag coefficient and the amplitude of the drag
and lift coefficients. A reasonable approximation of the numerical error due to the grid resolution can be
obtained by using Richardson extrapolation. The discretization error is estimated as [16]

() =B (22)
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Table 3

Grid dependence study for uniform flow past a circular cylinder for Re = 200: Cylinder position (x,y) = (0, 0), outlet position x = Xy, and
top and bottom boundaries y = +y,,,,, minimum grid resolution near cylinder wall Ax;,, Strouhal number St, drag coefficients Cp, m
(mean) and Cp, a (amplitude), and lift coefficient C , (amplitude)

Domain size Grid Results

Xmax Vinax Base grid AxL‘)n - St Cpm Cpa Cra
40D 15D 25 x 15 32 0.19536 1.34721 0.04306 0.66824
40D 15D 50 x 30 64 0.19904 1.36656 0.04568 0.69598
40D 15D 100 x 60 128 0.19965 1.37020 0.04626 0.70040
20D 7.5D 30 x 15 128 0.20165 1.39039 0.04786 0.71587
60D 22.5D 70 x 45 128 0.19935 1.36829 0.04605 0.69717

The time step is equal to AtU /D = 0.0015 and the number of grid refinement levels, /nay, is 6.

where ¢, denotes the solution on a grid where 7 = Ax = Ay is the base grid cell spacing. An approximation of
the convergence rate is given by

y = log((day, — bun) /(P — P1))
log(2) '

It needs to be pointed out that Eq. (22) is only accurate if the grids are sufficiently fine such that monotone and
nearly asymptotic convergence is obtained, the solution is well-behaved without singularities, and the grid
refinement is systematic and substantial. The convergence rate for integral quantities, such as force coeffi-
cients, is usually the same as the theoretical order if the solution is smooth and well-behaved. For more com-
plicated flows, a clear determination of the convergence rate may be difficult to obtain.

The results given in Table 3 converge monotonically towards a limiting value as the grid is refined. The
estimated convergence rates for Cpm, Cpa, CL, and St are 2.41, 2.17, 2.65 and 2.60, respectively, which are
close to the convergence rate obtained for the flow variables u, v and p in the previous example. Using Eq.
(22) we may define the relative numerical error for a grid variable ¢, as €,(¢) = e,(¢p)/(d), + €1(¢)). Then
the relative error for Cp,, and C., can be approximated to be about 0.06% and 0.12%, respectively, on the
finest grid. The drag force amplitude coefficient Cp , is somewhat more sensitive to the grid resolution, which
is expected since Cp, < Cpnm, where the relative error on the finest grid is about 0.36%. For the Strouhal num-
ber the approximated relative error on the finest grid is only 0.06%.

The force coefficients in Table 3 are based on Eq. (20). We may also use the control-volume formulation (21)
to calculate the drag and lift force on the cylinder. This gives Cp, = 1.37222, Cp, = 0.04638 and C., =
0.70097 on the finest grid. We notice there is an acceptable agreement between the force coefficients obtained
by both methods and, thus, the conservation of linear momentum is satisfactorily.

The effect of varying the size of the computational domain is demonstrated for the finest grid by the last
three rows in Table 3. The size of the computational domain is given as (10D + Xpax) X (2V,.)- We see that
reducing the domain size to 30D x 15D increases Cy , by 2.2% and Cp , by 3.5% as compared to the 50D x 30D
domain. Whereas increasing the domain size to 70D x 45D change Cy, and Cp, by only 0.46% and 0.45%,
respectively. Based on this grid dependence study it is found that the finest grid with the computational
domain size 50D x 30D capture the details of the two-dimensional laminar flow well, and it is used in the cal-
culations below.

5.2.1. Steady case

The flow reaches a steady, symmetric state for Reynolds number equal to 40. Two attached, recirculating
vortices are formed behind the cylinder as shown in Fig. 10 for the upper half of the symmetric flow. The
length of the recirculation zone, the location of the vortex centres and the angle of separation is given in Table
4 where they are compared with experimental and other numerical results. Coutanceau and Bouard [11] eval-
uated experimentally the influence of blockage and extrapolated their data such that results for infinite fluid
domain was presented. The present method predicts a somewhat larger recirculation zone than given by their
extrapolated values, and the predicted horizontal location of the vortex centre is closer to the cylinder than
obtained experimentally by [11]. The computed drag coefficient is also given in Table 4, and it is in reasonable
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Fig. 10. The streamlines for Re =40 and nomenclature used in Table 4.

agreement with the experimental value obtained by interpolating the results of [69]. Also, the present results
are found to be within the range of values obtained by other numerical methods.

The drag coefficient can be split into two parts, Cp = Cp, + Cp,, one component due to pressure and one
component due to viscous stresses, respectively. Henderson [26] showed that both Cp, and Cp, decrease as a
function of Re in the steady regime, and he approximated his numerical results by simple functions involving
only a two parameter fit (power law) where

Cpp(Re) = 2.8676/Re**™ and Cp,(Re) = 5.6106/Re"*.

For Re = 40 this give Cp, = 1.015 and Cp, = 0.529, which are close to but slightly below our calculated val-
ues of Cp, = 1.048 and Cp, = 0.544.

Fig. 11(a) compares the normalized wall pressure distribution with the experimental data of [24] and the
numerical results of [12,70]. The normalized pressure coefficient is defined as C, = (p — p..)/ 1 pU?2, where
P = 0is the ambient pressure. The calculated distribution of surface pressure agrees well with the experimen-
tal and numerical results. Using boundary layer approximations, Grove et al. [24] derived a theoretical expres-
sion for the stagnation pressure coefficient given as

v Ou s A L
1% 2 ox| Re ’
0 x=0,y=0

C

Po = 1
where 0 is the boundary layer thickness and the constant 4 = 8 is obtained from the continuous potential solu-
tion. The stagnation pressure coefficient obtained from the simulation is C, = 1.24 which is slightly larger
than the theoretical value C,, = 1.2 for Re = 40. The distribution of vorticity on the cylinder surface is shown
in Fig. 11(b). Our calculation compares well the numerical results of [8,12,70].

Table 4
Steady uniform flow past a circular cylinder for Re = 40: length L of recirculation zone, location (a, b) of vortex centre, separation angle 0,
and drag coefficient Cp (nomenclature given in Fig. 10)

L/D a/D b/D 0 (deg) Cp

Coutanceau and Bouard [11T* 2.13 0.76 0.59 53.5 -

Tritton [69T — - - - 1.57
Calhoun [9] 2.18 - - 54.2 1.62
Le et al. [39] 2.22 - - 53.6 1.56
Linnick and Fasel [45] 2.28 0.72 0.60 53.6 1.54
Russel and Wang [58] 2.29 - - 53.1 1.60
Xu and Wang [81] 221 - - 53.5 1.66
Herfjor [28] 2.25 0.71 0.60 51.2 1.60
Present study 2.29 0.72 0.60 53.9 1.59

4 Experimental results. The experimental Cp value is obtained by interpolating the results of Tritton [69].
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Fig. 11. Normalized (a) pressure and (b) vorticity distribution on the bottom half of the cylinder surface for Re =40. The upstream
stagnation point is located at 0 = 180° (nomenclature given in Fig. 10).

5.2.2. Unsteady case

The transition from steady to unsteady flow occurs at a critical Reynolds number between Re = 40 and 50.
Above this critical value the symmetry of the flow breaks down and a periodic, alternating shedding of vortices
from the cylinder wall occurs. To demonstrate the transition to this large scale 2D instability we consider the
case Re = 50. In this example we do not impose a perturbation at the inflow boundary but instead let round-off
errors in the computation trigger the instability. The time evolution of the lift coefficient is plotted in Fig. 12,
where we see that the oscillations grow for a considerable long time before it stabilize around U ,,/D = 2000.
This shows that the present method is fully capable of detecting the onset of vortex shedding, even with only an
infinitesimal artificial disturbance of the flow caused by the round-off errors. At tU /D = 2120 we decrease the
Reynolds number to Re = 40. Immediately, we notice how quickly the oscillations damp out and, eventually,
vanish. This indicates that the onset of laminar vortex shedding occurs somewhere between these two Reynolds
numbers, and it agrees with results found elsewhere (e.g. [26,39,45,58,61,69]).

The Strouhal number, which characterize the vortex shedding process, is estimated directly from the peri-
odic variation of the lift coefficient. As long as the vortex shedding is regular, this is a preferred approach as

0.1 . . : .
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Fig. 12. Onset of laminar vortex shedding: Time evolution of the lift coefficient for Re = 50. Decreasing the Reynolds number to Re = 40
at tU,,/D = 2120 damps out the instability.
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compared to using a discrete Fourier transform where a long sampling period of time is required in order to
accurately determine the Strouhal number. Williamson [78] proposed an empirical relation between the par-
allel (2D) shedding frequency and the Reynolds number based on experimental data, where

St = 0.00016Re + 0.1816 — 3.3265Re. (23)

We obtained a Strouhal number equal to 0.128 for Re = 50 in the simulation above. This is about 4% higher
than the empirical value St = 0.123. The calculated Strouhal numbers for Re = 100 and 200 are given in Table
S5, where they are compared with experimental and numerical results. The computed St-values are 2.8% and
1.5% larger than the empirical ones for Reynolds numbers equal to 100 and 200, respectively. It should be
noted that the flow undergoes a transition to three-dimensional shedding around Re = 180-194 [79,27] and
there is a discontinuous drop in the Strouhal number as the wake vortices become unstable and generate
large-scale vortex loops. Eq. (23) is therefore not truly valid for Re = 200; however, it gives a smooth contin-
uation of the two-dimensional S7—Re relation which is suitable for the purpose of comparison with two-dimen-
sional numerical computations.

The time-averaged normalized pressure and vorticity distributions on the cylinder surface for Re equal to
100 and 200 are presented in Fig. 13. Our calculation compares well with the numerical results of [54] (as given
in [34]) for Re = 100, but there is a larger discrepancy with the results presented by [34], particularly for w near
the location of maximum vorticity.

Table 5
Unsteady uniform flow past a circular cylinder for Re =100 and 200: Strouhal number St, drag coefficients Cp,, (mean) and Cp,
(amplitude), and lift coefficient Cy , (amplitude)

Re =100 Re =200

St CD,m CD,a CL.a St CD‘m CD.a CL‘a
Williamson [78T' 0.164 - - - 0.197 - - -
Calhoun [9] 0.175 1.33 0.014 0.298 0.202 1.17 0.058 0.668
Le et al. [39] 0.160 1.37 0.009 0.323 0.187 1.34 0.030 0.43
Linnick and Fasel [45] 0.166 1.34 0.009 0.333 0.197 1.34 0.044 0.69
Russel and Wang [58] 0.169 1.38 0.007 0.300 0.195 1.29 0.022 0.50
Xu and Wang [81] 0.171 1.42 0.013 0.34 0.202 1.42 0.04 0.66
Herfjord [28] 0.168 1.36 - 0.34 0.196 1.35 - 0.70
Present study 0.169 1.38 0.010 0.34 0.200 1.37 0.046 0.70

4 Experimental results. The St-values are based on a least-squares curve fit to the experimental data given by Eq. (23).
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Fig. 13. Time-averaged normalized (a) pressure and (b) vorticity distribution on the bottom half of the cylinder surface for Re = 100 and
200. The upstream stagnation point is located at 6 = 180° (nomenclature given in Fig. 10).
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The contribution from the pressure force, Cpyp, becomes increasingly important in the unsteady regime, but
the skin friction, Cp,, continues to drop as the Reynolds number is increased. This reduction in Cp, balance
the increase in Cp,, such that the total mean drag coefficient remains nearly constant. Henderson [26] fit his
numerical results to the curves

Cppm(Re) =1.4114 — 0.2667Re"™ ¥ exp(—3.375 x 10’3Re)
and
Cpym(Re) = 2.5818 /R 4%

for the time-averaged force coefficients. In the present calculations we obtained Cppm =
1.028 and Cp,, = 0.349 for Reynolds number equal to 100. The corresponding numbers obtained from the
curve fit above are Cp,m = 1.005 and Cp,;, = 0.345. For Reynolds number equal to 200 we obtained
Cppm = 1.113 and Cp,, = 0.258, and Henderson’s [26] formula give Cpym = 1.086 and Cp,, = 0.255. As
for the steady case the deviation is slightly larger for the pressure force than the viscous force but in overall
there is a reasonable agreement.

The drag and lift coefficients obtained for Reynolds numbers equal to 100 and 200 are also summarized and
compared with other numerical results in Table 5. The results considered here are found to be within the range
of data presented by others. However, there is a somewhat large scatter in the data reported, and this can be
partly attributed to the difference in the computational setup, e.g. domain size, grid resolution, boundary con-
ditions, and the nature of the numerical methods.

5.3. Impulsively started flow past objects

The impulsively started flow is here considered for a circular cylinder where Re = 550 and for a flat plate
oriented normal to the flow where Re = 126.

5.3.1. A circular cylinder in impulsively started flow

Flow around a circular cylinder at a relatively large Reynolds number of 550 is known to eventually
develop three-dimensional phenomena. However, at an early stage the flow will develop symmetrically about
an axis through the centre of the cylinder in the flow direction and the wake will still be laminar and two-
dimensional. The flow development is here considered only up to tU.,/D = 3.0. The computational setup is
the same as in the previous example where the cylinder diameter is D, the height of the domain is 30D and
the total length is 50D. The initial condition is the undisturbed uniform flow with velocity U, followed by
an initial projection step in order to enforce the divergence constraint.

The instantaneous drag coefficient Cp at tU,,/D = 1.0 is given for different grid resolutions in Table 6. We
notice that the difference in the drag coefficient obtained by the two finest grid resolutions is less than 0.3%.
Also, as given in Table 6, reducing the time step to half the size changes the drag coefficient by only approx-
imately 0.02%. Fig. 14 presents the normalized pressure coefficient and vorticity distribution on the cylinder
surface together with the radial velocity profile on the symmetry axis behind the cylinder for different grid res-
olutions at tU.,/D = 1.0. There is no significant difference in the results produced by the two finest grid res-
olutions. We may conclude from this grid dependence study that the finest grid resolution with time step size
AtU /D = 0.001 is sufficiently fine for this example, and it is used in the results presented below.

Table 6
Grid dependence study for impulsively started flow past a circular cylinder at dimensionless time 